
Large Language Models for Validating Network Protocol Parsers

Mingwei Zheng
Department of Computer Science

Purdue University
West Lafayette, USA

zheng618@purdue.edu

Danning Xie
Department of Computer Science

Purdue University
West Lafayette, USA
xie342@purdue.edu

Xiangyu Zhang
Department of Computer Science

Purdue University
West Lafayette, USA
xyzhang@purdue.edu

Abstract—Network protocol parsers are essential for enabling
correct and secure communication between devices. Bugs in
these parsers can introduce critical vulnerabilities, including
memory corruption, information leakage, and denial-of-service
attacks. An intuitive way to assess parser correctness is to
compare the implementation with its official protocol standard.
However, this comparison is challenging because protocol
standards are typically written in natural language, whereas
implementations are in source code. Existing methods like model
checking, fuzzing, and differential testing have been used to find
parsing bugs, but they either require significant manual effort
or ignore the protocol standards, limiting their ability to detect
semantic violations. To enable more automated validation of
parser implementations against protocol standards, we propose
PARVAL, a multi-agent framework built on large language
models (LLMs). PARVAL leverages the capabilities of LLMs to
understand both natural language and code. It transforms both
protocol standards and their implementations into a unified
intermediate representation, referred to as format specifications,
and performs a differential comparison to uncover inconsis-
tencies. We evaluate PARVAL on the Bidirectional Forwarding
Detection (BFD) protocol. Our experiments demonstrate that
PARVAL successfully identifies inconsistencies between the
implementation and its RFC standard, achieving a low false
positive rate of 5.6%. PARVAL uncovers seven unique bugs,
including five previously unknown issues.
Index Terms—Network protocol parsing, format specifications,
large language models

1. Introduction

Network protocols specify the rules that control com-
munication between devices, for example, TLS [1] for
secure communication, FTP [2] for file transfers, and IP [3]
for routing data. Network protocol parsing is a critical
component of protocol implementations, responsible for
analyzing incoming packets, validating their correctness,
and discarding malformed ones. This process protects data
integrity and enhances system security by preventing the
processing of potentially harmful packets.

Despite their critical role, network protocol parsers are
error-prone, which can lead to severe security vulnerabilities,

including memory corruption, information leakage, and
denial-of-service attacks. For instance, the Heartbleed [4]
vulnerability in OpenSSL [5]’s TLS parser allowed attackers
to access sensitive user information due to a missing bounds
check. Similarly, CVE-2021-41773 [6] in Apache’s HTTP
server exposed confidential files through a path traversal flaw
in the request parser.

Validating the correctness of network protocol parsers is
inherently challenging. A natural approach is to compare the
parser implementation against its official protocol standard to
identify inconsistencies. However, this process is complicated
by a fundamental representational gap: protocol standards
are typically written in natural language (e.g., RFCs), while
implementations are written in source code. Although both
aim to specify the same behavior, their different representa-
tions hinder direct comparison, making systematic validation
a significant challenge.

Various techniques have been proposed to address this
challenge. Model checking [7]–[9] verifies parser behavior
against formal protocol models to detect logical errors. While
effective, it often requires manual construction of formal
models, making it impractical for applying to large and fre-
quently evolving protocols. Fuzzing [10], [11] automatically
produces large volumes of test inputs to expose memory-
related issues, such as crashes. However, it primarily targets
low-level bugs and fails to assess whether the parser conforms
to the protocol’s intended semantics, leaving many semantic
bugs [12]–[15] undetected. Differential analysis [12], [16]
identifies inconsistencies by comparing how different imple-
mentations handle the same input. This approach assumes
that at least one implementation behaves correctly and may
miss bugs shared across all versions. While these methods
are effective in certain situations, they fall short of providing
an efficient way to validate parser implementations against
official protocol standards written in natural language.

Our Approach. We propose PARVAL, an LLM-based
multi-agent framework for validating parser implementa-
tions against their official protocol standards. PARVAL uses
LLMs to automatically abstract both the natural language
documentation and the parser implementation into a unified
intermediate representation, called format specifications.
These specifications capture the expected packet structure



and parsing logic, enabling direct comparison between the
protocol documentation and its implementation.

LLMs have demonstrated strong capabilities in extracting
format specifications from natural language [15], [17], but
applying them to source code remains challenging. In real-
world codebases, parsing logic is often scattered across
multiple files and functions [11], [12], making it difficult
to gather the full context needed for accurate format ex-
traction. Moreover, LLMs are prone to generating incorrect
or incomplete outputs (hallucinations), so validating and
refining the extracted formats is essential. This typically
relies on unit tests to check whether the extracted format
matches the implementation behavior. However, without a
well-isolated parsing module, generating and executing such
tests is difficult. Consequently, errors in the extracted format
specifications may go unnoticed, undermining the reliability
of comparing the format specifications extracted from the
parser implementation and the protocol standard.

To tackle the challenge of retrieving parsing-relevant con-
text from large codebases, PARVAL introduces a Retrieval-
Augmented Program Analysis Agent to automatically extract
code segments directly related to protocol parsing while
excluding irrelevant ones. This agent uses a dependency-
aware retrieval mechanism, beginning from the entry parsing
function and recursively using LLMs to analyze data depen-
dencies, control flow, and function calls. It incrementally
collects parsing relevant segments until the complete parsing
logic is isolated.

To reduce LLM hallucinations in LLM-generated format
specifications, PARVAL isolates the extracted parsing logic
into a standalone, executable module. This module takes a
buffer and its length as input and returns a boolean value
indicating whether parsing succeeds. PARVAL then extracts
a format specification from this module and generates unit
tests to check whether the module’s behavior matches the
extracted format specification. Any discrepancies identified
through testing are used as feedback to iteratively refine the
format, improving its accuracy over time.

Contributions. This paper explores the potential of LLMs
to validate parser implementations against natural language
protocol standards. While our approach does not guarantee
soundness or completeness, our evaluation on a real-world
protocol demonstrates its practical effectiveness, providing a
strong starting point for further investigation. In summary,
our main contributions are:

• We introduce PARVAL, a multi-agent framework that uses
LLMs to extract parsing behaviors from both source code
and protocol standards. These behaviors are represented
in a unified intermediate representation, called format
specifications, to enable direct comparison.

• PARVAL introduces a dependency-aware retrieval mech-
anism that automatically identifies and extracts relevant
parsing logic by analyzing data flow, control flow, and
function dependencies throughout the codebase.

• PARVAL isolates parsing logic into a standalone, exe-
cutable module, enabling test case generation to validate
and refine the extracted format specifications. This helps

void bfd_recv_cb (struct thread *t)

{

…
if (sd == bvrf->bg_shop || sd == bvrf->bg_mhop) {

mlen = bfd_recv_ipv4(sd, msgbuf, sizeof(msgbuf), …);
} else if (sd == bvrf->bg_shop6 || sd == bvrf->bg_mhop6) {

mlen = bfd_recv_ipv6(sd, msgbuf, sizeof(msgbuf), …);
}

if (mlen < BFD_PKT_LEN) {
cp_debug("too small (%ld bytes)", mlen);

return;
}

/* Parse the control header for inconsistencies:
struct bfd_pkt *cp = (struct bfd_pkt *)(msgbuf);

if (BFD_GETVER(cp->diag) != BFD_VERSION) {
cp_debug("bad version %d", BFD_GETVER(cp->diag));
return;

}
…

}

1

2
3
4

5

6
7
8
9

10

11
12

13

14
15

16
17
18

19

20
21

Figure 1: Entry Parsing Function in BFD Implementation

improve the accuracy of format specification extraction
and mitigates the impact of LLM hallucination. We
compare the extracted format specification against a
manually annotated ground truth and find that PARVAL
successfully extract the full parsing logic.

• We implement the proposed approach in PARVAL1. We
have evaluated PARVAL on the Bidirectional Forwarding
Detection (BFD) protocol to validate its parser implemen-
tation against the corresponding RFC standard. PARVAL
successfully identifies seven unique bugs, including five
previously undiscovered.

Organization. Section 2 presents a motivation example to
illustrate the challenges and our solutions. Section 3 details
our design. Section 4 evaluates the effectiveness of our tool.
Section 5 discusses limitations and future work. Section 6
reviews related work. Section 7 concludes the paper.

2. Motivating Example

Figure 1 shows a simplified version of the entry pars-
ing function in the BFD implementation. The function
bfd_recv_cb handles incoming BFD packets. It begins
by determining the socket type (sd) and invokes either
bfd_recv_ipv4 or bfd_recv_ipv6 to read the mes-
sage into msgbuf (lines 4 - 8). It then validates the message
length mlen (lines 10 - 13) and proceeds to parse the control
header (lines 14 - 20).

To validate the parser implementation, we leverage large
language models (LLMs) to extract format specifications
from the source code and the RFC document. By trans-
lating both into a unified representation, we enable direct
comparison and systematic validation. However, accurately
extracting protocol formats from source code presents two
key challenges.
Challenge 1: Retrieving Parsing-Related Context. LLMs
require complete parsing contexts to accurately extract

1. PARVAL is available at: https://github.com/zmw12306/PARVAL

https://github.com/zmw12306/PARVAL


protocol formats. However, in real-world codebases, parsing-
relevant logic is often spread across multiple functions,
files, and directories, making it challenging to automatically
identify and extract all relevant code. For example, in
Figure 1, struct bfd_pkt (line 15) and BFD_GETVER
(line 16) are defined in separate files. Without retrieving
these dependencies, LLMs cannot fully interpret the parsing
logic. Since feeding the entire codebase exceeds the context
window of LLMs, a selective context retrieval strategy is
necessary.
Our Solution: We design a dependency-aware retrieval
mechanism that guides LLMs to selectively collect parsing-
relevant code. Starting from the entry parsing function, it
traces input buffer usage through data and control dependen-
cies, as well as function calls, to collect essential context such
as structs, macros, and helper functions. This dependency
analysis guides LLMs to retrieve only the necessary context
to accurately extract protocol formats.

Challenge 2: LLM Hallucinations in Extracted Formats.
LLMs may generate inaccurate format specifications that
deviate from actual parser behavior, such as involving
incorrect field types, lengths, or ordering. To correct these
hallucinations, it is essential to test the consistency between
the extracted format specification and the original parser,
using the test results to guide iterative refinement. However,
this feedback loop becomes unreliable when the parsing logic
is tightly coupled with other parsing unrelated operations.
For instance, in Figure 1, the function bfd_recv_cb
expects a thread structure containing socket state and
runtime configuration. Before any parsing occurs, the func-
tion performs socket-related checks. In contrast, test inputs
generated from the extracted format consist solely of raw
packet data and cannot be passed directly to bfd_recv_cb.
To run a test, each packet data must be wrapped in a
correctly initialized thread structure. This additional setup
introduces complexity and obscures whether test failures
stem from the format itself, incorrect thread initialization,
or buggy socket handling. This undermines the reliability of
test-based feedback, making it difficult to detect and correct
LLM hallucinations in the extracted format.
Our Solution: To reduce LLM hallucinations, PARVAL
extracts the parsing logic into a standalone, executable
module that focuses only on packet parsing. This module
takes a raw buffer and its length as input and returns a
boolean indicating whether parsing succeeds. Valid and
invalid test packets generated from the extracted format
specification are directly passed to this module. If the module
rejects valid packets or accepts invalid ones, this indicates a
mismatch between the LLM extracted format specification
and the actual parsing behavior. Such mismatches are used to
iteratively refine the extracted format, improving its accuracy.

3. Approach

Figure 2 presents an overview of our approach, which
consists of four stages. In Stage 1 Parser Isolation (Sec-
tion 3.1), the Retrieval-Augmented Program Analysis Agent

Parser Validation

Retrieval-Augmented 
Program Analysis Agent

Coder Agent Protocol Code Base

read

write

execute

module spec
Spec 
Agent

syntax/semantics check

doc spec

syntax check

Spec 
Agent

bug

differential 
analysis

Retrieval-Augmented 
Program Analysis Agent

Protocol 
Code Base

   Write

    Read

 
Module Isolation Agent

Isolated Parsing Module CodeSpec

SpecAgent

Syntax & Semantics Check

Document

Syntax Check

Execute

Differential 
Analysis

Parser Isolation

Spec. Extraction from Code

DocSpec

1

2

3 Spec. Extraction from Doc.

4

SpecAgent

Figure 2: The Overview of PARVAL

Task Description: Refactor the given protocol implementation to isolate input 
parsing logic into a new parser function. This function should:
•  Take only two parameters: the input buffer and its length.
•  Return True if the input is valid, False otherwise.
•  Exclude checks unrelated to the input buffer or its length.

Iteratively call 'query_name' to retrieve definition from the codebase. Please 
output complete function content for each newly added or modified function. 

Example: [example]
Entry parsing function: [function]

Figure 3: LLM Task Description for Parser Isolation

and the Module Isolation Agent collaborate to extract an
Isolated Parsing Module from the protocol codebase. In
Stage 2 Spec. Extraction from Code (Section 3.2) and
Stage 3 Spec. Extraction from Doc. (Section 3.3), the
Spec Agent extracts format specifications from the Isolated
Parsing Module and protocol standards, producing CodeSpec
and DocSpec, respectively. In Stage 4 Parser Validation
(Section 3.4), the two format specifications are compared
to identify inconsistencies, which may point to bugs in the
implementation or missing details in the protocol standard.
The following sections describe each stage in detail.

3.1. Stage 1: Parser Isolation

In this stage, we isolate the parsing logic from the
protocol codebase using an LLM-based multi-agent frame-
work that integrates dependency-aware retrieval mechanism
and parser module construction. As shown in Figure 2,
the framework consists of two LLM agents: the Retrieval-
augmented Program Analysis Agent and the Module Isolation
Agent, augmented by tools to interact (i.e., read, write, or



execute) with the protocol codebase. The task description
for this multi-agent system is shown in Figure 3.

The Retrieval-augmented Program Analysis Agent uses
an LLM to iteratively analyze code and retrieve relevant
context through a dependency-aware retrieval mechanism.
Starting from the entry parsing function, it traces input
buffer usage via data and control dependencies, as well as
function calls, to identify macros, types, and helper functions
critical to parsing. It then employs an AST-based retrieval
tool, built on Tree-sitter [18], to extract the corresponding
definitions from the source code (read). In parallel, the
Module Isolation Agent utilizes the retrieved context to
construct an isolated parsing module. It iteratively writes
identified parsing logic into a standalone, executable module
and executes it, continuously refining the module based on
build results and error feedback. When additional definitions
or clarifications are needed, it collaborates with the Retrieval-
augmented Program Analysis Agent to retrieve more contexts.
The final output is a fully isolated parsing module that
takes an input buffer and its length as input and returns
a boolean indicating parsing success. Unlike the original
codebase, which often mixes parsing with other processing
logic, this isolated module contains only the parsing logic
and is independently testable.

Example. For the entry parsing function shown in Fig-
ure 1, isolating the parsing logic requires understand-
ing the behavior of its callee functions, as additional
parsing logic may reside within them. To achieve this,
LLMs must retrieve relevant context, just as a human
would when analyzing the code. Hence, the Retrieval-
augmented Program Analysis Agent retrieves the definition of
bfd_recv_ipv4, bfd_recv_ipv6, and BFD_GETVER
to determine whether they contain parsing-related operations.
The agent identifies msgbuf and mlen as the received BFD
packet and its length. Therefore, determining whether a piece
of code contributes to BFD parsing involves analyzing its
dependencies on msgbuf and mlen. For example, at line
15 in Figure 1, msgbuf is cast into a bfd_pkt, making cp
directly data-dependent on msgbuf. The if condition at line
16 operates on a field of cp and performs input validation,
making it directly relevant to BFD packet parsing. In contrast,
the if conditions at lines 4 and 6 check the socket types
rather than BFD packet fields, hence irrelevant to BFD packet
parsing. The resulting Isolated Parsing Module generated by
the Module Isolation Agent is shown in Figure 4.

3.2. Stage 2: Specification Extraction from Code

In this stage, we employ SpecAgent to transform the
isolated parsing module into a formal representation of the
input format. This representation, called CodeSpec, is written
in a domain-specific language (DSL) for describing protocol
formats. SpecAgent performs this translation automatically
by analyzing the parsing logic and iteratively refining the
resulting specification based on feedback from both syntax
and semantic checks.

bool parse_bfd_packet (uint8_t *msgbuf, size_t mlen)
{

if (mlen < BFD_PKT_LEN) {
 cp_debug("too small (%ld bytes)", mlen);
 return false;

}
      /* Parse the control header for inconsistencies:

struct bfd_pkt *cp = (struct bfd_pkt *)(msgbuf);
if (BFD_GETVER(cp->diag) != BFD_VERSION) {

 cp_debug("bad version %d", BFD_GETVER(cp->diag));

 return false;

}
        … // other parsing logic
      return true;
}

1

2

3

4

5

6
7
8

9
10

11
12

13

14
15

Figure 4: Isolated Parsing Module Example

Syntax Check. To ensure syntactic correctness, SpecAgent
uses the DSL’s grammar to generate an initial CodeSpec from
the isolated parsing module. It then iteratively validates and
refines the specification until it conforms to the DSL rules.
Semantic Check. Beyond syntactic correctness, CodeSpec
must match the semantic behavior of the isolated parsing
module. We verify this by generating symbolic test cases from
CodeSpec—positive cases that conform to the format and
negative ones that violate it. These are run against the isolated
parsing module to check whether valid inputs are accepted
and malformed ones are rejected. If a positive case fails
or a negative case passes, it indicates a semantic mismatch.
To resolve such discrepancies, SpecAgent iteratively refines
CodeSpec based on the test outcomes. Specifically, when
a positive case fails, we instrument the parser to capture
its execution trace, which is then provided to SpecAgent
to guide the correction. In contrast, if a negative case is
incorrectly accepted, SpecAgent analyzes how the input
violates CodeSpec and adjusts the format to enforce the
intended parsing behavior.

3.3. Stage 3: Specification Extraction from Doc.

In this stage, SpecAgent analyzes protocol standards (e.g.,
RFCs) to extract a structured format specification, DocSpec,
using the same DSL as in Stage 2. This transforms the
natural language description of the message format—such as
field definitions, length constraints, and value ranges—into
a formal representation. Using a unified DSL enables direct,
systematic comparison between DocSpec and the code-
derived CodeSpec.

3.4. Stage 4: Parser Validation

In the final stage, we validate the parser implementation
by comparing the protocol specifications extracted from code
(CodeSpec, from Stage 2) and protocol standards (DocSpec,
from Stage 3). Using Differential Analysis, we identify
discrepancies such as mismatched fields or constraints. Each
inconsistency is manually examined to determine whether it
is a false positive or a true semantic mismatch. Confirmed



mismatches are then classified as either parser bugs or issues
in the protocol standard.

4. Evaluation

Our tool is built on top of AutoGen [19], a multi-agent
framework for developing LLM applications. We use Claude-
3.5 Sonnet [20] as the LLM API with a temperature of
0 to reduce randomness and enhance reproducibility. For
repository interaction, we build our tool using Tree-sitter [18],
an AST-based parser to analyze and manipulate source code.
For protocol format extraction (Section 3.2 and Section 3.3),
we use 3D language [21] as the DSL and EverParse [22]
as the syntax checker. We evaluate the effectiveness of our
approach by addressing the following research questions:

• RQ1: How effective are the four stages of PARVAL?
• RQ2: How well does the LLM extract format specifica-

tions from code compared to a baseline?
• RQ3: What are the root causes of the discrepancies

between the implementation and the RFC?
• RQ4: How much manual effort does PARVAL require?

4.1. Dataset

We evaluate PARVAL on the BFD protocol using the C-
based implementation from FRRouting [23] (stable/8.4), and
RFC 5880 [24] as the official protocol standard. PARVAL is
then applied to validate the implementation against the RFC.

4.2. RQ1: Effectiveness of Each Stage in PARVAL

4.2.1. Stage 1: Parser Isolation. We evaluate parser isola-
tion by measuring the precision and recall of the resulting
isolated parsing module. Precision reflects the correctness
of extracted parsing logic, while recall indicates how much
of the original logic is preserved. Ground truth is estab-
lished by manually annotating the original parser, aided by
NetLifter [11], which uses LLVM-based static analysis to
identify parsing-relevant IR instructions.
Results. The isolated parsing module achieves 100% preci-
sion and recall, showing that all validation logic is correctly
extracted and preserved. This demonstrates PARVAL ’s
ability to isolate complete and accurate parsing logic. We
also assess whether isolation alters parser behavior. In the
BFD case, packet parsing does not depend on runtime context
(e.g., socket type or protocol version), so the isolated module
maintains the intended input structure. However, for protocols
influenced by configuration or negotiation state, isolation may
unintentionally broaden or restrict accepted inputs—requiring
additional control flow modeling to preserve these semantics.

4.2.2. Stage 2: Specification Extraction from Code.
We evaluate PARVAL ’s accuracy in generating CodeSpec,
the format specification extracted from the isolated parsing
module, consisting of field names, types, and constraints. A
ground truth is manually constructed from the module’s logic,

TABLE 1: Precision and Recall for Format Specification
Extraction from the Isolated Parsing Module

Metric PARVAL Precision Recall

Field Name 11 100.0% 100.0%
Field Type 11 100.0% 100.0%
Field Constraint 4 100.0% 100.0%

and precision and recall are used to measure the correctness
and completeness of the extracted specification.
Results. As shown in Table 1, PARVAL correctly extracts
all 11 field names, 11 field types, and 4 field constraints
with perfect precision and recall. Since the isolated parser
fully encapsulates the original parsing logic, the extracted
CodeSpec is both accurate and complete for this target.

4.2.3. Stage 3: Specification Extraction from Doc. We
evaluate DocSpec, the format extracted from the RFC,
by comparing it against a manually constructed ground
truth, using precision and recall to assess accuracy and
completeness.

TABLE 2: Precision and Recall for Format Specification
Extraction from RFC Document

Metric PARVAL Precision Recall

Field Name 37 100.0% 100.0%
Field Type 37 97.3% 97.7%
Field Constraint 15 100.0% 58.3%

Results. As shown in Table 2, PARVAL extracts 37 field
names, 37 field types, and 15 field constraints from the RFC
document. Field names and types are extracted with near-
perfect precision and recall, as they are explicitly defined.
Constraint extraction is more difficult. While the precision
remains 100%, recall drops to 58.3%, this is because many
constraints are implied rather than explicitly stated in the
RFC documents. Despite some missing constraints, the high
precision indicates that those extracted constraints are reliable
and useful for validation. In particular, if an implementation
fails to enforce a constraint specified in DocSpec, it is highly
likely to indicate a true implementation bug.

4.2.4. Stage 4: Parser Validation. We validate the parser by
comparing CodeSpec and DocSpec, focusing on field type and
constraint differences, as field names do not affect behavior.
Discrepancies are identified by mismatches between the two
specifications, and then traced back to source code and the
RFC to determine whether they represent true inconsistencies.

TABLE 3: Differential Analysis Results: CodeSpec vs.
DocSpec

Discrepancy Type Total Inconsis. True Inconsis. Extraction Error

Field Type 21 21 0
Field Constraint 15 13 2

Total 36 34 2

Results. As shown in Table 3, PARVAL reports 36 discrep-
ancies between CodeSpec and DocSpec, including 21 type



and 15 constraint mismatches. Among the 36 discrepancies,
34 are confirmed as true inconsistencies, and only two are
false positives caused by LLM hallucination, yielding a
low 5.6% false positive rate. This demonstrates PARVAL’s
effectiveness in detecting real mismatches between parser
implementation and its protocol standard.

4.3. RQ2: Baseline Comparison

Setup and Metrics. To assess PARVAL’s end-to-end ef-
fectiveness in extracting format specification from source
code (including both parser isolation (Stage 1) and specifi-
cation extraction (Stage 2)), we compare CodeSpec against
a manually constructed ground truth based on the full
BFD implementation, not just the isolated parsing module.
Precision and recall are used to measure how well PARVAL
captures field names, types, and constraints.
Results. As shown in Table 4, PARVAL achieves 100% pre-
cision and recall, confirming its accuracy and completeness
against the full implementation.

TABLE 4: Precision and Recall for Format Specification
Extraction from the Full BFD Implementation

Metric PARVAL Precision Recall

Field Name 11 100.0% 100.0%
Field Type 11 100.0% 100.0%
Field Constraint 4 100.0% 100.0%

4.4. RQ3: Root Cause of Identified Discrepancies

Setup and Metrics. To identify the root causes of true
discrepancies, we manually analyze each true inconsistency
and classify it as either an implementation bug or an RFC
issue such as unclear, inaccurate, or missing descriptions.
For implementation bugs, we check existing bug reports
to determine whether they are newly discovered. For RFC
issues, we carefully examine the RFC descriptions to assess
their root causes.

TABLE 5: Root Causes of Identified Inconsistencies

Discrepancy Type Implementation Bug RFC Issue

Field Type Mismatch 21 0
Constraint Mismatch 11 2

Total 32 2

Results. As shown in Table 5, 32 of 34 true inconsistencies
are implementation bugs, while two stem from RFC issues.
To avoid redundancy in reporting, we group inconsistencies
with the same root cause and identify seven unique bugs,
five of which are newly detected by PARVAL, detailed in
Table 6. The two RFC-related issues are also previously
undocumented and detailed in Table 7.

TABLE 6: The Detected Implementation Bugs

No. Bug Description New

1 Flag M should always be 0. ✗
2 Miss check Authentication Present (A) to handle optional Authentication Section. ✗
3 Miss validation for Simple Password Authentication Section format. ✓
4 Miss validation for Keyed MD5 Authentication Section format. ✓
5 Miss validation for Meticulous Keyed MD5 Authentication Section format. ✓
6 Miss validation for Keyed SHA1 Authentication Section Format. ✓
7 Miss validation for Meticulous Keyed SHA1 Authentication Section format. ✓

TABLE 7: The Detected RFC Document Issues

No. RFC Document Issues New

1 Miss explicitly mention that Detect Mult should not be 0. ✓
2 Miss explicitly mention that Length should be at least 24. ✓

4.5. RQ4: Estimation of Manual Effort

We assess the manual effort involved in each stage of
PARVAL. Stage 1 requires manually identifying the entry
parsing function, which takes approximately 10 minutes.
Stages 2 and 3 are fully automated and require no human
intervention. Stage 4, which involves comparing CodeSpec
and DocSpec and analyzing inconsistencies, is currently
manual and takes about 20 minutes.

5. Discussion

This work explores the potential of LLMs to validate
network protocol parsers by extracting and comparing pro-
tocol format specifications from source code and natural
language documents. Rather than providing a fully verified
or complete solution, PARVAL demonstrates how LLMs can
assist in a domain traditionally dominated by static analysis
and formal methods. While promising, PARVAL does not
provide formal soundness or completeness guarantees. Both
CodeSpec and DocSpec are LLM-generated and may contain
inaccuracies, requiring manual inspection to distinguish true
inconsistencies from extraction errors.

Given these limitations, PARVAL is best viewed as a
practical assistant that complements formal techniques. Its
effectiveness must be evaluated empirically. Although we
demonstrate its utility on BFD, broader validation across
diverse protocols and implementations is needed to assess
generality and robustness. Future work includes extending
support to parsers written in other programming languages,
further automating the validation process, and integrating
PARVAL into existing protocol testing frameworks.

6. Related Work

6.1. Techniques for Protocol Parser Validation

Model Checking. Model checking-based methods [7]–[9]
formally verifies protocol implementations against their
specifications. However, constructing formal models often
requires significant manual effort, limiting its applicability
to practical validation tasks.
Conventional Fuzzing. Fuzzing is a widely used approach
for testing protocol implementations by generating test cases



and executing them to trigger unexpected behavior, particu-
larly crashes. Mutation-based fuzzing, such as AFLNET [10],
creates test inputs by mutating existing valid or semi-valid
inputs. While it requires little knowledge of the protocol
format, its effectiveness relies heavily on the quality of seed
inputs and often struggles to reach deep execution paths when
parsing conditions are complex. In contrast, generation-based
fuzzing, like BooFuzz [25], generates inputs using predefined
grammars, improving coverage but requiring additional
effort to define these grammars. NetLifter [11] automates
grammar construction through static analysis to extract path
conditions, but it still focuses only on low level bugs such as
crashes. However, many protocol implementation bugs are
semantic bugs that do not cause crashes but violate protocol
specifications, which conventional fuzzing fails to detect.
Differential Analysis. Differential analysis identifies in-
consistencies by comparing multiple implementations of
the same protocol. Static tools like ParDiff [12] extract
state machines from different protocol implementations to
detect deviations. Dynamic differential testing tools, like DPI-
Fuzz [16] and Prognosis [26], generate test cases to execute
across multiple implementations and compare their runtime
behaviors. While these approaches can uncover semantic
bugs (i.e., silent violations of protocol rules), they rely on
the availability of multiple independent implementations,
which is not always feasible. They also fail to detect bugs
shared across all implementations, limiting their effectiveness
in certain scenarios.

6.2. Protocol Format Lifting

Previous work has focused on extracting protocol formats
from either source code or protocol standards to support
validation and testing.
Format Extraction from Source Code. Tools like
Netlifter [11] and ParDiff [12] use static analysis to extract
protocol formats from source code. These methods often
struggle with loops, either relying on imprecise heuristics
for loop summarization, or bounded loop unrolling, leading
to incomplete or inaccurate format extraction. Additionally,
these tools are typically language-specific and require signif-
icant effort to support new languages. PARVAL overcomes
these limitations by leveraging LLMs for flexible, language-
agnostic format extraction. It summarizes loop behavior and
validates the extracted logic through test case execution.
Format Extraction from Protocol Standards. Recent
works [15], [17], [27] highlight the potential of LLMs
for extracting format specifications from protocol standards.
3DGen [17] and ParCleanse [15] apply LLMs to transform
unstructured protocol descriptions into structured formats. In
contrast, ChatAFL [27] avoids feeding RFCs to the model
and instead relies on pre-trained models like GPT-3.5, which
have been trained on RFCs and are able to answer format-
related queries directly.

PARVAL combines both source code and document-
based format extraction, enabling cross-validation to identify
inconsistencies between implementations and their protocol

standards. By leveraging LLMs, PARVAL offers a flexible,
language-agnostic approach to protocol format lifting.

6.3. Large Language Models for Coding Tasks

Large Language Models (LLMs) have been widely used
for various coding tasks, such as code generation [28]–[31],
program testing [32]–[35], static bug detection [36]–[41], re-
verse engineering [42]–[44], and automated repair [45]–[47].
These models leverage extensive code repositories, natural
language data, and domain-specific knowledge to tackle tasks
that once demanded substantial human expertise [31], [48]–
[51]. However, LLM-based approaches also face challenges
such as hallucination [52], [53] and incapabilities in reasoning
about complex program behaviors [54], [55]. To overcome
these challenges, recent research has explored techniques
such as chain-of-thought prompting [56], retrieval-augmented
generation [57], and the incorporation of symbolic reason-
ing [37]–[39], aiming to enhance both the reliability and
transparency of model outputs. PARVAL builds on these
advancements by leveraging retrieval-augmented-LLMs for
protocol format extraction and using symbolic test case
generation for refinement, thereby reducing hallucinations
and enhancing correctness.

7. Conclusion

This paper presents PARVAL, a multi-agent framework
that leverages LLMs to validate network protocol parsers
against protocol standards. By extracting format specifica-
tions from both source code and natural language docu-
mentation, PARVAL enables direct comparison to uncover
inconsistencies between implementations and standards. We
evaluate PARVAL on the BFD protocol and demonstrate its
effectiveness in identifying mismatches with high precision,
uncovering seven unique implementations bugs, five of which
were previously unknown. While PARVAL does not offer
formal guarantees, it illustrates the practical utility of LLMs
in improving protocol correctness. Our results underscore
the potential of LLM-assisted validation as a complement
to traditional static analysis and formal methods, offering a
more scalable approach to protocol verification.

Acknowledgment

We thank all the anonymous reviewers and our shepherd,
Nathan Dautenhahn, for the insightful feedback and guidance.
We are grateful to the Center for AI Safety for providing
computational resources. This work was funded in part by the
National Science Foundation (NSF) Awards SHF-1901242,
SHF-1910300, Proto-OKN 2333736, IIS-2416835, DARPA
VSPELLS - HR001120S0058, and ONR N00014-23-1-2081.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsors.



References

[1] “The transport layer security (tls) protocol,” https://datatracker.ietf.org/
doc/html/rfc5246.

[2] “File transfer protocol (ftp),” https://datatracker.ietf.org/doc/html/
rfc959.

[3] “Internet protocol (ip),” https://datatracker.ietf.org/doc/html/rfc791.

[4] Heartbleed, “The heartbleed bug,” https://heartbleed.com, 2020.

[5] “Openssl,” https://www.openssl.org.

[6] “Cve-2021-41773,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-41773.

[7] M. Musuvathi and D. R. Engler, “Model checking large network
protocol implementations,” in NSDI. USENIX, 2004, pp. 155–168.

[8] G. Díaz, F. Cuartero, V. V. Ruiz, and F. L. Pelayo, “Automatic
verification of the TLS handshake protocol,” in SAC. ACM, 2004,
pp. 789–794.

[9] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith, “Modular
verification of software components in C,” in ICSE. IEEE Computer
Society, 2003, pp. 385–395.

[10] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Aflnet: a greybox
fuzzer for network protocols,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST).
IEEE, 2020, pp. 460–465.

[11] Q. Shi, J. Shao, Y. Ye, M. Zheng, and X. Zhang, “Lifting network
protocol implementation to precise format specification with security
applications,” in Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’23. ACM,
2023, p. 1287–1301.

[12] M. Zheng, Q. Shi, X. Liu, X. Xu, L. Yu, C. Liu, G. Wei, and
X. Zhang, “Pardiff: Practical static differential analysis of network
protocol parsers,” in Proc. ACM Program. Lang., ser. OOPSLA ’24.
ACM, 2024, pp. 1208–1234.

[13] C. Liu, S. Gong, and P. Fonseca, “Kit: Testing os-level
virtualization for functional interference bugs,” in Proceedings of
the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2,
ser. ASPLOS 2023. New York, NY, USA: Association for
Computing Machinery, 2023, p. 427–441. [Online]. Available:
https://doi.org/10.1145/3575693.3575731

[14] M. Zheng, J. Yang, M. Wen, H. Zhu, Y. Liu, and H. Jin, “Why do de-
velopers remove lambda expressions in java?” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2021, pp. 67–78.

[15] M. Zheng, D. Xie, Q. Shi, C. Wang, and X. Zhang, “Validating
network protocol parsers with traceable rfc document interpretation,”
in Proceedings of the 34th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2025.

[16] G. S. Reen and C. Rossow, “Dpifuzz: a differential fuzzing framework
to detect dpi elusion strategies for quic,” in Proceedings of the 36th
Annual Computer Security Applications Conference, ser. ACSAC ’20.
ACM, 2020, pp. 332–344.

[17] S. Fakhoury, M. Kuppe, S. K. Lahiri, T. Ramananandro, and N. Swamy,
“3dgen: Ai-assisted generation of provably correct binary format
parsers,” arXiv preprint arXiv:2404.10362, 2024.

[18] “Tree-sitter,” https://tree-sitter.github.io/tree-sitter/.

[19] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang,
X. Zhang, S. Zhang, J. Liu, A. H. Awadallah, R. W. White,
D. Burger, and C. Wang, “Autogen: Enabling next-gen LLM
applications via multi-agent conversation,” in ICLR 2024 Workshop
on Large Language Model (LLM) Agents, 2024. [Online]. Available:
https://openreview.net/forum?id=uAjxFFing2

[20] “Claude 3.5 sonnet,” https://www.anthropic.com/claude/sonnet.

[21] “3d: Dependent data descriptions for verified validation,” https:
//project-everest.github.io/everparse/3d.html.

[22] “Everparse,” https://project-everest.github.io/everparse/3d-lang.html.

[23] F. community, “The frrouting protocol suite,” https://github.com/
FRRouting/frr, 2024.

[24] “Bidirectional forwarding detection (bfd),” https://datatracker.ietf.org/
doc/html/rfc5880.

[25] J. Pereyda, “Boofuzz,” https://github.com/jtpereyda/boofuzz, 2023.

[26] T. Ferreira, H. Brewton, L. D’Antoni, and A. Silva, “Prognosis: closed-
box analysis of network protocol implementations,” in Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, 2021, pp. 762–774.

[27] R. Meng, M. Mirchev, M. Böhme, and A. Roychoudhury, “Large
language model guided protocol fuzzing,” in Proceedings of the 31st
Annual Network and Distributed System Security Symposium (NDSS),
ser. NDSS ’24. The Internet Society, 2024.

[28] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[29] Y. Ding, M. J. Min, G. Kaiser, and B. Ray, “Cycle: Learning to self-
refine the code generation,” Proceedings of the ACM on Programming
Languages, vol. 8, no. OOPSLA1, pp. 392–418, 2024.

[30] J. Liu, S. Xie, J. Wang, Y. Wei, Y. Ding, and L. Zhang,
“Evaluating language models for efficient code generation,” in
First Conference on Language Modeling, 2024. [Online]. Available:
https://openreview.net/forum?id=IBCBMeAhmC

[31] Q. Zhu, D. Guo, Z. Shao, D. Yang, P. Wang, R. Xu, Y. Wu,
Y. Li, H. Gao, S. Ma et al., “Deepseek-coder-v2: Breaking the
barrier of closed-source models in code intelligence,” arXiv preprint
arXiv:2406.11931, 2024.

[32] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via
large language models,” in Proceedings of the 32nd ACM SIGSOFT
international symposium on software testing and analysis, 2023, pp.
423–435.

[33] S. Kang, J. Yoon, and S. Yoo, “Large language models are few-
shot testers: Exploring llm-based general bug reproduction,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 2023, pp. 2312–2323.

[34] C. Yang, Y. Deng, R. Lu, J. Yao, J. Liu, R. Jabbarvand, and L. Zhang,
“Whitefox: White-box compiler fuzzing empowered by large language
models,” arXiv preprint arXiv:2310.15991, 2023.

[35] G. Ryan, S. Jain, M. Shang, S. Wang, X. Ma, M. K. Ramanathan,
and B. Ray, “Code-aware prompting: A study of coverage-guided test
generation in regression setting using llm,” vol. 1, no. FSE, Jul. 2024.
[Online]. Available: https://doi.org/10.1145/3643769

[36] B. Steenhoek, M. M. Rahman, R. Jiles, and W. Le, “An empirical
study of deep learning models for vulnerability detection,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE), 2023, pp. 2237–2248.

[37] H. Li, Y. Hao, Y. Zhai, and Z. Qian, “Enhancing static analysis for
practical bug detection: An llm-integrated approach,” Proceedings
of the ACM on Programming Languages, vol. 8, no. OOPSLA1, pp.
474–499, 2024.

[38] C. Wang, W. Zhang, Z. Su, X. Xu, and X. Zhang, “Sanitizing
large language models in bug detection with data-flow,” in
Findings of the Association for Computational Linguistics: EMNLP
2024, Miami, Florida, USA, November 12-16, 2024, Y. Al-
Onaizan, M. Bansal, and Y. Chen, Eds. Association for
Computational Linguistics, 2024, pp. 3790–3805. [Online]. Available:
https://aclanthology.org/2024.findings-emnlp.217

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc791
https://heartbleed.com
https://www.openssl.org
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41773
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41773
https://doi.org/10.1145/3575693.3575731
https://tree-sitter.github.io/tree-sitter/
https://openreview.net/forum?id=uAjxFFing2
https://www.anthropic.com/claude/sonnet
https://project-everest.github.io/everparse/3d.html
https://project-everest.github.io/everparse/3d.html
https://github.com/FRRouting/frr
https://github.com/FRRouting/frr
https://datatracker.ietf.org/doc/html/rfc5880
https://datatracker.ietf.org/doc/html/rfc5880
https://github.com/jtpereyda/boofuzz
https://openreview.net/forum?id=IBCBMeAhmC
https://doi.org/10.1145/3643769
https://aclanthology.org/2024.findings-emnlp.217


[39] C. Wang, W. Zhang, Z. Su, X. Xu, X. Xie, and X. Zhang,
“LLMDFA: analyzing dataflow in code with large language
models,” in Advances in Neural Information Processing Systems
38: Annual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, A. Globersons, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. M. Tomczak, and C. Zhang, Eds., 2024.
[Online]. Available: http://papers.nips.cc/paper_files/paper/2024/hash/
ed9dcde1eb9c597f68c1d375bbecf3fc-Abstract-Conference.html

[40] J. Guo, C. Wang, X. Xu, Z. Su, and X. Zhang, “Repoaudit: An
autonomous llm-agent for repository-level code auditing,” arXiv
preprint arXiv:2501.18160, 2025.

[41] Z. Li, S. Dutta, and M. Naik, “Llm-assisted static analysis for
detecting security vulnerabilities,” CoRR, vol. abs/2405.17238, 2024.
[Online]. Available: https://doi.org/10.48550/arXiv.2405.17238

[42] D. Xie, Z. Zhang, N. Jiang, X. Xu, L. Tan, and X. Zhang, “Resym:
Harnessing llms to recover variable and data structure symbols from
stripped binaries,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, 2024, pp.
4554–4568.

[43] X. Xu, Z. Zhang, Z. Su, Z. Huang, S. Feng, Y. Ye, N. Jiang, D. Xie,
S. Cheng, L. Tan et al., “Leveraging generative models to recover
variable names from stripped binary,” arXiv preprint arXiv:2306.02546,
2023.

[44] H. Tan, Q. Luo, J. Li, and Y. Zhang, “Llm4decompile: Decom-
piling binary code with large language models,” arXiv preprint
arXiv:2403.05286, 2024.

[45] N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language
models on automated program repair,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE,
2023, pp. 1430–1442.

[46] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury, “Autocoderover:
Autonomous program improvement,” in Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2024, pp. 1592–1604.

[47] Y. Wu, N. Jiang, H. V. Pham, T. Lutellier, J. Davis, L. Tan,
P. Babkin, and S. Shah, “How effective are neural networks
for fixing security vulnerabilities,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2023. New York, NY, USA: Association for
Computing Machinery, 2023, p. 1282–1294. [Online]. Available:
https://doi.org/10.1145/3597926.3598135

[48] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan et al., “The llama 3 herd of
models,” arXiv preprint arXiv:2407.21783, 2024.

[49] A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng,
C. Zhang, C. Ruan et al., “Deepseek-v3 technical report,” arXiv
preprint arXiv:2412.19437, 2024.

[50] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[51] D. Xie, B. Yoo, N. Jiang, M. Kim, L. Tan, X. Zhang, and J. S. Lee,
“Impact of large language models on generating software specifications,”
arXiv preprint arXiv:2306.03324, 2023.

[52] S. Wang, Z. Li, H. Qian, C. Yang, Z. Wang, M. Shang, V. Kumar,
S. Tan, B. Ray, P. Bhatia et al., “Recode: Robustness evaluation of
code generation models,” arXiv preprint arXiv:2212.10264, 2022.

[53] F. Liu, Y. Liu, L. Shi, H. Huang, R. Wang, Z. Yang, L. Zhang, Z. Li,
and Y. Ma, “Exploring and evaluating hallucinations in llm-powered
code generation,” arXiv preprint arXiv:2404.00971, 2024.

[54] J. Chen, Z. Pan, X. Hu, Z. Li, G. Li, and X. Xia, “Reasoning runtime
behavior of a program with llm: How far are we?” arXiv preprint
cs.SE/2403.16437, 2024.

[55] C. Liu, S. D. Zhang, A. R. Ibrahimzada, and R. Jabbarvand, “Code-
mind: A framework to challenge large language models for code
reasoning,” arXiv preprint arXiv:2402.09664, 2024.

[56] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V.
Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning in
large language models,” Advances in neural information processing
systems, vol. 35, pp. 24 824–24 837, 2022.

[57] M. Minor and E. Kaucher, “Retrieval augmented generation with llms
for explaining business process models,” in International Conference
on Case-Based Reasoning. Springer, 2024, pp. 175–190.

http://papers.nips.cc/paper_files/paper/2024/hash/ed9dcde1eb9c597f68c1d375bbecf3fc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/ed9dcde1eb9c597f68c1d375bbecf3fc-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2405.17238
https://doi.org/10.1145/3597926.3598135

	Introduction
	Motivating Example
	Approach
	Stage 1: Parser Isolation
	Stage 2: Specification Extraction from Code
	Stage 3: Specification Extraction from Doc.
	Stage 4: Parser Validation

	Evaluation
	Dataset
	RQ1: Effectiveness of Each Stage in ParVAL
	Stage 1: Parser Isolation
	Stage 2: Specification Extraction from Code
	Stage 3: Specification Extraction from Doc
	Stage 4: Parser Validation

	RQ2: Baseline Comparison
	RQ3: Root Cause of Identified Discrepancies
	RQ4: Estimation of Manual Effort

	Discussion
	Related Work
	Techniques for Protocol Parser Validation
	Protocol Format Lifting
	Large Language Models for Coding Tasks

	Conclusion
	References

