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Abstract. Despite numerous methods for identifying, preventing, and

protecting against kernel-level exploits, attacks persist. One of the key

challenges is the prevalence of weird machines—unintended computational

artifacts that attackers dynamically stitch together from unmonitored

low-level operations. This paper presents Hi-Res, a programmable detec-

tion framework that systematically lifts high-level exploit behaviors from

their low-level memory operations. Unlike traditional methods that rely

on expert-driven, hand-crafted monitors, Hi-Res automatically generates

a unique fingerprint of kernel execution given a specific input and exe-

cution contexts. Hi-Res projects memory traces into a high-resolution

hyperplane, where behavioral fingerprints are constructed from observed

access patterns. Using this representation, Hi-Res, is able to explore

the hypothesis that low-level program traces exhibit locality properties

that are distinct, context-sensitive memory access patterns unique to

specific workloads. This locality coupled with the concrete Hi-Res repre-

sentation enables the empirical modeling of working sets without prior

knowledge of program semantics. By analyzing specific dynamic context

tuples—such as system call, access-from location, allocation contexts, and

call stacks—we demonstrate that these fingerprints reliably differentiate

between normal and exploit behaviors. Our results confirm that locality

serves as a robust signal for precise exploit detection, establishing Hi-Res

as a general, data-driven framework for dynamic security monitoring.

1 Introduction

The Linux kernel, with its extensive codebase contributed by thousands, represents
a critical component in modern computing environments. Despite its robustness,
the kernel’s monolithic architecture and shared protection domain expose it to
significant security vulnerabilities. Current kernel-hardening efforts, such as the
Linux Self-Protection Project (KSPP), have made strides in fortifying the kernel
against exploitation [2–4, 6]. Yet, these measures often offer only coarse-grained
protection and lack the precision needed to counter sophisticated attacks that
leverage multiple exploit techniques simultaneously [5, 11, 20, 21].

This gap in defense capabilities highlights the necessity for a more granular
approach to exploit detection. Consider the challenge of detecting a sophisticated
kernel-level exploit aimed at privilege escalation (as depicted in Figure 1), a
common and dangerous threat in cybersecurity. Traditional detection systems
might monitor for anomalies or signatures of known attacks, but sophisticated
adversaries can evade these by employing novel techniques or combining mul-
tiple vulnerabilities [7, 8, 22–24]. For instance, an attacker might exploit a
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(a) Feature: access_ip (b) Feature: alloc_ip

Fig. 1. Distribution of memory accesses for different features. access_ip stands for

the address of the memory accessing instruction. alloc_ip stands for address of the

malloc() instruction of the accessed object. Note that the memory accesses are also

visualized as a mini heatmap shown on the right-hand side where the axis ranges

correspond to the main figures.

previously unknown bug to manipulate kernel data structures subtly, bypassing
coarse-grained monitors designed to catch more overt malicious activities. This
limitation underscores the need for a detection mechanism that operates with
finer granularity and higher accuracy.

Our research introduces a novel methodology and system, Hi-Res, that ad-
dresses this need by focusing on the unique behaviors exhibited by attacks at
the object level. This approach is grounded in the hypothesis that malicious
activities will manifest distinct patterns that can be detected through careful
analysis of memory access behaviors and context. In essence, attack semantics
are noticeably different at object granularity because objects represent types and
types represent semantics. As captured by the object level access graph, attack
behavior becomes visible without requiring any extensive supervised learning
methods. In addition to the increased precision, we also tackle the challenging
problem of efficiency for full object tracing by developing a live monitor swapping
mechanism to record only suspicious process contexts.

To validate our approach, we conducted a comprehensive analysis of various
workloads and exploits, examining their memory access patterns to inform the
development of both signature-based and anomaly-based detectors. Our study
extends beyond simple detection, exploring the impact of different fine-grained
features on the accuracy and efficiency of these detectors. The culmination of our
research is the creation of an in-kernel monitor that provides detailed insights into
kernel-mode behaviors with minimal performance overhead, marking a significant
advancement in the field of kernel exploit detection, and contributing:

– a new methodology and system, Hi-Res, for detecting kernel exploits through
object-granular behavior monitoring,
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– demonstrate the effectiveness of this approach through a comparative study
of normal and exploit workloads (§5), and

– introduce an efficient in-kernel monitoring framework designed for real-time
exploit detection (§4).

This work not only bridges the gap in current kernel protection mechanisms but
also sets the stage for future advancements in securing critical systems against
increasingly sophisticated threats.

2 Threat Model

We assume that the attacker starts by compromising an untrusted process so that
she can execute arbitrary code in the untrusted process. To interact with the rest
of the system, the attacker executes unprivileged instructions (e.g. to fabricate
data) or goes through the software interface exported by the operating system
abstract binary interface (ABI) and leverages knowledge about the internals of
the kernel. We also assume that all the trusted processes are benign and free
of vulnerabilities so they can not be exploited by the attacker via mechanisms
like inter-process communication (IPC). Our work intends to study the detection
of software-based exploits. Therefore, hardware-based attack techniques like
Meltdown [14] are out of scope.

3 Motivation and Background

As we described in Section 1, our approach to exploit detection is based on the
visibility of the kernel’s fine-grained behaviors. Figure 1 shows the object-level
memory access patterns for two workloads: CVE-2022-0847 exploit and df. The
exploit is based on an arbitrary write enabled by the DirtyPipe vulnerability,
while df is a utility showing file system information. From the view of existing
coarse-grained defenses, they look the same: neither involves illegitimate user-
space access or corruption of stack canaries. But in terms of memory access trace,
those two are clearly different: the exploit not only modifies the (supposedly)
read-only pages in the page cache, but also traverses code paths and touches
objects for triggering the vulnerability, while the normal one does not. Moreover,
normal workloads like df never touch struct cred and escalate their own privilege.

To gain visibility of the fine-grained behaviors that existing defenses lack,
we build an in-kernel monitoring framework whose mechanisms are built on top
of the techniques pioneered by Memorizer. Memorizer is the first of its kind to
obtain a complete trace of all the object-level memory accesses from within the
Linux kernel as far as we are aware [18]. To obtain such traces, one of the key
innovations of Memorizer is the combination of source code instrumentation and
compile-time instrumentation. It (1) instruments the Linux source code for key
object lifecycle events such as allocation and free for all objects so that it can
maintain an address-to-object mapping for each byte in the memory at runtime.
(2) adds compile-time instrumentation for a complete instruction-level memory
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access trace and leverages the address-to-object mapping to lift the trace to the
object level on the fly.

3.1 Address-to-Object Mapping

The mapping is implemented as a three-level hash table that mimics the page
tables for address translation, though its granularity is byte rather than page.
Given a memory address, there is a unique path along the hash table hierarchy
such that the leaf node contains a pointer of its metadata (serving also as an
object identifier) that the address belongs to.

To maintain the mapping, Memorizer adds hooks to the “allocate” methods
of the kernel so that each time an object is allocated, the entries corresponding
to the bytes covered by the object are populated. In order to perform an address-
to-object translation, one simply walks the hash table hierarchy from the top to
the leaf node. The “free” methods of the allocators are also hooked so that the
entries corresponding to the bytes covered by the object are cleared when the
object is freed.

3.2 Object-level Memory Access Tracing

The standard object model [13, 16] is used by Memorizer to represent memory
accesses. Each access can be denoted as a tuple (subject, object) where the
subject is simply the address of the memory accessing instruction, and the object
is an identifier in some form. Note that it is possible to enrich the definition
of subject and objects with extra runtime states when the object allocation or
memory access events happen, at the cost of additional memory overhead.

Memorizer generates a complete object-level memory access trace by adding
compile-time instrumentation to the kernel for a complete instruction-level mem-
ory access trace and leveraging the address-to-object mapping described in the
previous subsection to lift the trace to object level on the fly.

As a proof of concept, Memorizer simply hooks the Kernel Address Sanitizer
(KASAN)’s runtime. KASAN [1] uses a GCC compiler pass that instruments
memory accessing instructions. The following code snippet shows an example of
how it works conceptually. For a read to the memory address saved in register
%rbx, the compiler pass adds the call to __hook_load8() with the argument as
%rbx. Note that %rdi is one of the conventional registers for passing arguments
to methods for Unix-based systems [15].

1 mov %rbx,%rdi
2 call <__hook_load8>
3 mov (%rbx),%r12

Listing 1.1. Example assembly code in AT&T style

The body of the hook __hook_load8() essentially notes down the instruction-
level memory access and uses the address-to-object mapping to translate the
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accessed address to the corresponding object metadata. Since it induces pro-
hibitive overhead to track the temporal sequencing of every memory access to
every object, Memorizer chooses to keep track of the frequency only.

Also, note that the choice of reusing KASAN means Memorizer loses some
memory accesses since KASAN does not add a tracepoint when the access has
no chance of incurring memory-safety error.

3.3 Internal Allocator

To avoid stability issues, Memorizer requests a piece of memory from the memblock
allocator at boot time and never frees it back to the rest of the kernel. It manages
the memory with a simple bump allocator and never frees the memory it has
allocated. Therefore, as the system runs, the memory footprint of Memorizer
grows monotonically and the kernel will eventually go out of memory and panic.

Hook Description

on_start() Called when the access monitor is started so that

the policy can initialize its own data structure.

on_exit() Called when the monitored process(es) exits so that

the policy can free its data structure.

on_syscall_begin(nr_syscall) Called at the beginning of syscalls.

nr_syscall is the index of the syscall.

on_syscall_end(nr_syscall) Called at the end of syscalls.

on_mem_access(addr, size)
Called when machine-level memory access happens.

addr is the memory address of what’s being accessed,

and size corresponds to the machine instruction.

Table 1. The interface of the monitor framework that is exposed to policy writers.

Policies implement those functions and register them with the monitor, which calls

them when the corresponding events happen.

4 In-kernel Monitor

In this section, we present our in-kernel monitor framework which targets individ-
ual processes. The main purpose of the framework is to allow flexible tracing of
low-level features1, upon which the proposed detector can be quickly prototyped
and evaluated.

The layered architecture of the framework is depicted in Figure 2. At the
topmost is the policy layer where individual policies process the stream of trace
events and decide whether the monitored process is normal or suspicious. One or
more policies can be run concurrently in case they are related. Each policy is

1 A list of the currently supported features can be found in Section 5.1.
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Fig. 2. The layered architecture of the proposed framework.

defined as a set of event handlers, which are registered with the mechanism layer
at monitor start time. We explore the design space of some possible policies for
exploit detection in Section 5.

Next is the mechanism layer that aims to expose a set of trace events (listed in
Table 1) of the monitored process(es) to the policy layer. The key component of
the mechanism layer is the efficient per-process tracing framework. At the lowest
level, the mechanism is based on the fine-grained tracing techniques pioneered
by Memorizer[18] with our specialization and extension to adapt them for our
exploit detection use cases. Memorizer is a comprehensive in-kernel tracer that
aims to collect memory access traces together with dynamic contexts for the
whole system. Like other whole-system tracers, it induces a prohibitively high
overhead for the whole system, which makes it unsuitable for online detection.
The page table decoupling technique we proposed effectively lowers the whole
system overhead.

4.1 Overview

This section presents an end-to-end description of the workflow of the monitor.
The monitor can be toggled on and off by a boolean kernel command line
parameter. If it is toggled on, at some point in the early-boot stage, the global
address-to-object mapping is created and maintained thereafter. Then, right
before the init process is created, the monitor scans the kernel code for the
tracepoints of memory accessing instructions and saves them as a list. The code
scanning uses the existing x86 analysis framework in the kernel. After the creation
of the list, the tracepoints are toggled off by overwriting them with nops.

The monitor can be started for a process with a custom system call that
requires no capability. We build a loader program that makes the call to enable
the monitor and use execve() to load another binary. When the monitor is
turned on for a process, it (1) initializes the process-specific data structures for
access tracing (2) duplicates the page tables, and turns on the tracepoints by
reverting the nops. This applies to the monitored processes only. Note that, unlike
Memorizer, we forgo the kernel-mode activities that have no associated process
context, like interrupt handlers. We do not trace page allocation either.
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On each system call, the access tracing is toggled on right before the system
call handler is invoked. For each tracepoint triggered, the registered memory
access handler is invoked. When the system call handler is done, the access tracing
is disabled. Finally, when a monitored process quits (i.e., gets terminated), it first
switches back to the original page table used by unmonitored processes, then
frees the page table of the process.

To enable flexible policies, the monitor exposes a set of hooks for each of the
events listed in Table 1. For example, the policy can register an event handler
whenever there is memory access. It can also register another handler when
the syscall is about to exit. The implementation of the event handler compares
the trace of the monitored process with known exploit attempts and decides
whether the process is malicious. We present an exploration of different policies
in Section 5.

4.2 Per-process Monitoring

Strawman: “if” checking. Unlike Memorizer which targets the whole system,
our monitor watches individual processes to mitigate the performance impact.
However, the challenge is that all processes share the same piece of code when
the system runs in kernel mode. A naive way to enable the monitor for only a
subset of processes is to add a runtime check for each of the hook handlers as
shown in the code snippet below (Listing 1.2):

1 void __hook_load8(unsigned long mem_addr) {
2 if (current->flag && PF_TRUSTED) {
3 return;
4 }
5 }

Listing 1.2. A strawman approach for per-process monitoring

Page Table Decoupling. The “if” checking approach above incurs some
overhead associated with the branching instructions, as shown in our performance
evaluation (Section 6). Instead of runtime checking, we adapt the idea in [12]
and let the untrusted process and the trusted processes run slightly different
kernels. The trusted processes’ tracepoints are nops while the untrusted processes’
tracepoints are the actual hooks (i.e. call instructions).

There are many possible ways to run different kernels for different processes.
Different from the runtime dispatching mechanism as done in [12], we use different
page tables with different kernel text section mappings. The workflow can be
described as follow:

1. On boot time, use the in-kernel x86 disassembler to scan the kernel code and
build a list of hook addresses.

2. Create fresh copies of all kernel text pages.
3. For the original kernel text pages, disable all hooks by no-oping.
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4. When a new monitored process is started, replace its kernel text mapping
and point them to the duplicated pages with hooks enabled.

Note that some parts of the kernel assume that the text mapping for all
processes is the same. For example, the “static key label” / “jump label” API
modifies the text section at runtime to enable/disable certain code paths. In its
implementation, it keeps track of the latest state of the associated code address
and prints an alert whenever a mismatch is detected. The underlying challenge is
to keep the page tables in sync and deal with the differences in the text section.
In our implementation, we simply disable the problematic API. A better way
to fix this is to hook the existing live patch patching API and remove direct
modification with the API call.

4.3 Object-Level Memory Access Tracing

Most of this part is the same as Memorizer, which uses a compiler pass to generate
an instruction-level trace and lift the trace to the object level on the fly using the
address-to-object mapping described in the previous section (refer to Section 3.2).

While Memorizer hooks the KASAN runtime, to reduce the unnecessary
overhead caused by existing KASAN logic, we link in our own runtime for access
tracing instead of using the original KASAN runtime.

4.4 Kernel Allocator

Memorizer reserves a piece of memory from the machine at boot time through
the memblock allocator. The bump allocator it uses to manage its own memory
can easily cause fragmentation. Instead, we get the memory from the buddy
allocator and manage it using a simple slab allocator. This allows better memory
reuse and reduces memory overhead. Unlike in Memorizer, the operation of the
buddy allocator itself is not tracked.

Another issue is that the kernel allocators are not available at the early-boot
stage while the monitor can trace early-boot objects. We delay the initialization
of the monitor until the buddy allocator is ready. This means we lose some
early-boot objects that Memorizer can track.

5 Policies

As part of the in-kernel monitoring framework, a policy is a set of handlers of
events listed in Table 1. They can be as simple as a do-nothing policy consisting
of empty functions for each handler or as complex as a full-fledged online detector
that traces the kernel and kills the monitored process when it detects a malicious
behavior. By implementing the detectors as policies we reuse the infrastructure
for per-process tracing.

In this section, we study the design space of policies with experiments. For
each policy, we first collect data and study the workloads we target by offline
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(a) access_ip (b) alloc_ip (c) access_ip + alloc_ip

(d) access_ip + alloc_ip +

callstack

(e) syscall (f) syscall + access_ip

(g) syscall + alloc_ip (h) syscall + access_ip +

alloc_ip
(i) syscall + access_ip +

alloc_ip + callstack

Fig. 3. Similarity of Normal workloads. This demonstrates the ability a feature can

discriminate pairs of workloads. The similarity between a pair of workloads is denoted

as a cell in the matrix. The color of the cell indicates the similarity. The brighter the

color, the closer the behavior of the two workloads with respect to the feature.
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Fig. 4. Distribution of similarity for each feature. This shows the discrimination power

of different features.

analysis. Then we present how the policy can be implemented with our online
monitor.

In Section 5.1, we begin with a trace-only policy that simply traces various
features. Based on the trace-only policy, we describe two detector policies that
detect malicious behavior in the following Sections 5.2 and 5.3.

5.1 Trace-Only Policy

The only job of this policy is to record the traces of the kernel-level memory
access in terms of some of the following features we are going to study:

– syscall: the syscall indices where this memory access happens
– access_ip: the instruction address of the memory accessing instruction
– alloc_ip: the instruction address of the allocator method (e.g. kmalloc())

call of the object being accessed
– callstack: the callstack when alloc_ip is executed

The policy maintains a per-process hash table keyed by (a tuple of) the
features above. It can be described in terms of the interface exposed by the
framework (refer to Table 1) as shown below:

The Trace-Only Policy

– on_mem_access(): collect desired features, insert them into the hash table.

5.2 Signature-Based Detector

In this section, we study the feasibility of building a signature-based detector as a
policy of our framework. From a high-level view, signature-based detectors define
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what is bad first, and anything else is considered good (essentially a “blacklist”).
The key is to discriminate the bad from the good. We designed a metric of
similarity and evaluate how well they can discriminate exploit attempts from
normal workloads. We also experimented with different combinations of features.
Finally, we verify our analysis by building a functional prototype.

Data Collection and PreProcessing The data were collected as follows.
First, to mitigate indeterminism, we repeat each workload 20 times. Then we
take the intersection of each trial of the same workload. Finally, we compare the
intersection of each workload with the others. The workloads are shown in the
similarity matrices in Figures 3 as tick labels.

Similarity Analysis We adopt the similarity metric of weighted Jaccard simi-
larity [9, 19] where the weight is the inverse document frequency (IDF) [10, 17]
of the feature.

For a collection of traces C = {T1, T2, ..., Tn} whose elements can be denoted
as T = {e1, e2, ..., en}, the IDF of e with respect to the collection C is

idfC(e) = log
|C|

|{T ∈ C : e ∈ T}| + 1 (1)

where the term in the denominator |{T ∈ C : e ∈ T}| stands for number of traces
that contains e. The more frequent e appears in different traces, the smaller the
weight idfC(e) is. For the sake of simplicity, we shall omit the subscript C in the
following text and write idf(e).

For each feature, we take its inverse document frequency as the weight. Based
on this, we define the weighted Jaccard similarity [9] as follows:

Jaccidf (T1, T2) =

∑
e∈T1∩T2

idf(e)∑
e∈T1∪T2

idf(e) (2)

This weighted metric can distinguish the features that are rare in the collection
from those that are common. Two traces are likely to be similar if either (1) both
of them have little rare features, and the majority of features are shared (2) both
of them have many rare features, and lots of rare features are shared.

Figures 3 show the confusion matrices for different features. For each subfigure,
both the x-axis and the y-axis range in the same set of workloads. A cell (x, y)
denotes the similarity of the two corresponding workloads, ranging from 0 to
1. The darker the color, the higher the similarity, and vice versa. Note that
the diagonal of the matrix is always 1 (pure black) because the similarity of a
workload with itself is always 1. On the other hand, the majority of the cells
have a similarity of 0. This means that the detector will be able to capture the
differences between the pair of workloads. Some cells have a higher similarity,
this can potentially confuse the detector and lead to false positives.
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To compare across different features, we summarized each confusion matrix to
a violin shown in Figure 4. We can see a general trend that the more features we
add, the more likely that the similarity of a pair of different workloads remains low.
Based on the analysis above, we conclude that the signature-based detector

is able to discriminate normal workloads against exploit workloads,

and adding more features leads to a lower false positive rate generally.

We also observe that system call is a discriminative feature. This motivates the
per-syscall analysis in Section 5.3.

Actually Positive Actually Negative

Predicted Positive 5 0

Predicted Negative 0 90

Table 2. Confusion matrix of the signature-based detector. The feature is (syscall,
access_ip,alloc_ip). The data is collected by running 95 trials with our prototype.

(a) (syscall, access_ip) (b) (syscall, access_ip,
alloc_ip)

(c) (syscall, access_ip,
alloc_ip, callstack)

Fig. 5. Per-syscall anomaly scores for the five exploit workloads for different features.

Not all system calls are shown. For example, system calls that are not called in both

exploit and workloads or incur too few features are not shown.

Detector Generally, a signature-based detector can be implemented as a policy
described below:
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Number of Features

CVE-2022-0185 1135

CVE-2022-0847 813

CVE-2022-2639 1132

CVE-2021-3490 117

CVE-2021-31440 132

Table 3. The size of the signature of different exploits. The feature is (syscall,
access_ip,alloc_ip).

The Policy of Signature-Based Detector

– on_start(): Read the signature from the file and stores them in a hash table.
– on_mem_access(): Collect desired features as keys, and test them against the

hash table for signatures. Count the number of distinct matches.
– on_syscall_exit(): If the number of distinct feature matches is greater than

a threshold, then the workload is considered an exploit.

With the exploit signatures from Section 5.2, we implemented the signature-
based detectors for 5 different exploits we collected from the Internet with the
target feature (syscall, access_ip, alloc_ip). For each exploit, we drive the
monitor with its signature and run both the particular exploit and 18 normal
workloads from the previous section. So there are 5 ∗ (1 + 18) = 95 trials in total.
The result is shown in Table 2. Overall, the detector is able to detect all the
exploits and no false positives are observed when it monitors normal workloads.

The size of the signature for different exploits is shown in Table 3. The
signatures consist of up to 1135 features, which translate to 99,880 bytes with
our current prototype implementation. This is negligible compared to the size of
the space that other parts of the kernel take.

5.3 Anomaly-Based Detector

In this section, we study the feasibility of building an anomaly-based detector as
a policy of our framework. We try different combinations of features shown in
Section 5.1 and analyze how well they can discriminate exploit attempts from
normal workloads.

From a high-level view, anomaly-based detectors define what is good first,
and anything else is considered bad (essentially a “whitelist”). Similar to Sec-
tion 5.2, the key is to discriminate the bad from the good. We designed yet
another2 similarity metric for this and evaluate how well they can discriminate
2 A strawman solution is to reuse the definition for the signature-based detector Sec. 5.2

but instead collect the signatures of normal workloads. However, this would not work

because (1) Malicious workloads can easily bypass this by doing something normal.
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exploit attempts from normal workloads. We also experimented with different
combinations of features. Finally, we verify our analysis by building a functional
prototype.

Data Collection and PreProcessing We use the same set of workloads (both
normal and exploits) in the previous section. Also, we split all the traces by their
syscall indices so that we can do per-syscall analysis. For each normal workload,
we repeat it 20 times, and 19 of them are considered the “training set” of the
anomaly score, while 1 of them remains unused for the “test set”. Then we take
the union of all the traces in the training set as the known trace. On the other
hand, we use two test sets: (1) the separated trials of the normal workloads that
are not in the training set as mentioned above (2) trials of all exploit workloads.

Anomaly Analysis Given a new workload, we define the anomaly score of the
new one N against known ones O as the ratio of features in N that are not in
the known trace O:

anomaly(N, O) =


|N \ O|

|N |
if |N | > 0

0 if |N | = 0
(3)

We analyze the data by computing the per-syscall anomaly score of each
trial in the test set with regard to the training set. We find that the trials of
the normal workloads lead to little anomaly as expected, while the trials of
exploits translate into significant anomalies. For the sake of demonstration, we
aggregate all exploits and show the results for different features. Refer to Figure 5.
The x-axes correspond to system call indices, and the y-axes correspond to the
number of features. The orange bars correspond to features that only appear in
the exploit workload (test set) but not the normal workload (training set). We
can see a number of system calls where the exploit-only features dominate or
take a substantial portion. In conclusion, by focusing on particular system

call contexts and watching for anomaly features, we can reliably detect

unknown exploits.

Detector Generally, an anomaly-based detector can be built as a policy described
below:

The Policy of Anomaly-Based Detector

– on_start(): Read the normal profile from file and stores them in a hash table.
– on_mem_access(): Collect desired features as keys, if they haven’t appeared

before, add them in another hash table for the current workload.
– on_syscall_exit(): If the number of unique features in the current workload’s

hash table is greater than a threshold, then the workload is considered an
anomaly.
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Actually Positive Actually Negative

Predicted Positive 5 0

Predicted Negative 0 18

Table 4. Confusion matrix of the anomaly-based detector. The feature is (syscall,
access_ip, alloc_ip, callstack). The data is collected by running 23 trials with

our prototype.

access_ip alloc_ip callstack
min 2 2 2

average 207 10 37

max 3852 488 1423

Table 5. The aggregated per-syscall statistics of individual features for the normal

profile. The object column corresponds to accessed objects, not the total of the global

mapping. This shows the range and the expected number of features in a random syscall

used in the normals.

We implement a detector using the features (syscall, access_ip, alloc_ip
, callstack). The detector is driven by a single normal profile (described in
Sec. 5.3) and can be used to detect any exploit attempts. We test the detector by
running the 18 normal workloads which it was built from and the 5 exploits as
well. So there are 23 trials in total. The result is shown in Table 4. Overall, the
anomaly-based detector can identify all the exploit attempts we have without
any false positives, which is consistent with the analysis above.

In terms of memory usage, the normal profile consists of up to 230,919 features,
which translates to 21 megabytes with our current prototype implementation.
We also show the statistics of unique individual features in Table 5.

6 Performance Evaluation

This section studies the performance of the tracer framework under different
features. We begin with the performance of the components of the framework
which includes the overhead of maintaining the address-to-object mapping and
page table manipulation. Next, we study the performance of different features.
We omit the evaluation of the two detector policies because they add negligible
overhead based on the trace-only policy by design. Finally, we present the memory
usage of the framework.

Our kernel is implemented based on mainline Linux kernel v5.10. The perfor-
mance evaluation was done on bare metal equipped with AMD Ryzen 9 3900X
and 128G memory. The OS and compiler we use are Ubuntu 20.04 and gcc9.4.0
respectively. The kernel configuration file .config is taken from the Ubuntu kernel
with our customization and the jump label API disabled (see Section 4.2).
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Process Times (microseconds)

null call null I/O stat open/clos slct TCP

vanilla Linux 0.05 0.09 0.36 0.81 3.07

pgtbl. 0.05 0.1 0.45 0.91 3.93

“if” check 0.14 0.61 3.83 5.96 39

obj. tracing + pgtbl. 0.14 0.61 4.1 7.24 37.5

obj. tracing + “if” check 0.14 0.62 4.08 7.19 37.3

sig inst sig hndl fork proc exec proc sh proc

vanilla Linux 0.1 0.54 104 189 722

pgtbl. 0.1 0.6 110 231 821

“if” check 0.25 2.85 240 573 1664

obj. tracing + pgtbl. 0.26 3.06 291 853 2105

obj. tracing + “if” check 0.25 293 521 1863

Local Communication Bandwith (MB/s)

Pipe AF UNIX TCP File reread Mmap reread

vanilla Linux 5040 10000 8025 12500 18200

pgtbl. 4170 10000 7582 11400 18200

“if” check 1677 6241 1808 4702.9 18100

obj. tracing + pgtbl. 1689 5290 2080 4634.3 17900

obj. tracing + “if” check 1581 5245 1708 4665.9 18100

Bcopy (libc) Bcopy (hand) Mem read Mem write

vanilla Linux 19600 10300 16000 15500

pgtbl. 20000 10300 16000 16300

“if” check 19600 10000 16000 15800

obj. tracing + pgtbl. 19500 10400 16000 16200

obj. tracing + “if” check 19600 10200 16000 15500

Table 6. LMbench Evaluation for trusted processes. Feature is (access_ip, alloc_ip)

apache

(reqs/sec)

postgresql

(TPS)

openssl

(signs/sec)

compress-7zip

(MIPS)

tensorflow

(images/sec)

Trusted Processes

vanilla Linux 35687.38 493 193 103240 12.29

pgtbl. 31305.83 489 185.9 97683 12.03

“if” check 6268.55 387 189.3 101994 12

obj. tracing + pgtbl. 5339.64 381 185.7 101919 11.96

obj. tracing + “if” check 5385.6 379 185.2 101590 12

Untrusted Processes

access_ip 1653.55 202 190.8 100407 10.69

alloc_ip 1185.62 186 188.9 100427 10.39

access_ip+alloc_ip 1135.13 184 186.9 99100 10.4

access_ip+alloc_ip+callstack 1022.5 183 191.1 98974 10.37

Table 7. Phoronix Test Suite Evaluation for trusted and untrusted processes. For

untrusted processes, page table decoupling is tured on. Object tracing is also turned on

except for the access_ip case.
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First of all, observe that our monitor does not decrease the pure memory
IO performance in any cases (Tables 6, 7): the performance of the Bcopy3,
Mem read/write in lmbench and the memory-intensive macro test cases (openssl,
comrpress-7zip, tensorflow) stays almost the same.

Trusted Processes To begin with, observe that the proposed page table
manipulation mechanism for no-oping tracepoints can save us a lot of overhead
compared to just guarding them with branch checking. To see this, first compare
the vanilla Linux (row 1) with the “if” checking way (row 3) in Tables 6, 7. We
can see that the tracepoints significantly decrease the performance of the system
in almost all metrics. On the other hand, the proposed page table manipulation
mechanism (row 2) yields performance comparable to vanilla Linux.

However, when object tracing is enabled (rows 4, 5 in Tables 6, 7), the
performance decreases significantly. That is because the monitor maintains a
per-byte mapping to shadow objects with an interval tree, which requires O(logn)
insertion time where n is the object size. The performance burden overshadows
the benefit brought by no-oping tracepoints. We discuss potential ways to address
this in Section ??.

Untrusted Processes The performance overhead of untrusted (i.e. monitored)
processes is shown in Table 7. Again, for memory-intensive workloads, the
performance barely decreases, while for network-intensive and disk-intensive
workloads the performance decreases significantly (up to 98% degradation). This
is because we monitor the kernel activity only, and disk and network IO is
generally syscall-dense.

Different Features Table 7 shows the overhead of different features for untrusted
processes. The general trend is that the more features we use, the more overhead
we have. This is because as the type of features increases, the number of unique
features is likely to increase.

Memory Consumption After booting the system, the framework uses a total
of 78MB of memory for the global address-to-object mapping. After running
lmbench with the trace-only policy, new objects take an additional 638MB of
memory. On the other hand, 112,993 unique features are recorded, which takes
a total of ∼10MB of memory. Our current implementation uses a hash table of
32MB to store those features, and the size of the table can be tweaked easily.
The memory usage of the features is negligible as we are tracing unique types of
features. For the detector-based policies, an additional hash table of similar size
is needed to store the signatures/normal profile, but their size is again negligible
(up to a few tens of megabytes), as mentioned in Sections 5.2 and 5.3.

3 Bcopy() is similar to memcpy(). It was depreciated in POSIX.1-2001 and removed in

POSIX.1-2008.
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7 Discussion and Future Work

We hope to supplement them with the following in future efforts.

Practical Tool While our aim in this work was to examine the potential for context-
sensitive memory access patterns to distinguish exploits, an efficient industry level
state of the art intrusion detection system requires significant enhancesments.
Our future work includes the addition of an optimization algorithm that uses an
enriched data set of normal and exploit behaviors to hit a performance budget
of observed memory access to likelyhood of attack detection. Given the results
already we believe a reduced fingerprint based on the most different but least
frequently accessed objects will provide a powerful monitor while still providing
enough coverage to detect evasion.

Enriched Signature Analysis We run Hi-Res on different classes and create
kernel level memory access footprints of each type, so that we can create a
classifier for different CWEs, and further the ability to detect anomalous behavior.
Furthermore, we aim to model and examine known rootkits to provide effective
working set models to identify common exploit fingerprints in the grammar of
the working sets.

Expanding Dyanimic Contexts and Guided Fuzzing Kernel level memory accesses
describe program behavior and provide a context sensitive view; Contexts obtained
from Hi-Res reduce the reachability of the probable program execution states,
potentially providing ways to enhanced fuzzing with Hi-Res based mutation
fuzzing.

Vulnerability Research and Reverse Engineering Since our approach only requires
instrumenting the kernel, this tool can also be used to improve reverse engineering
endeavours.

Formalizing the Model The present description is a bottom up real implementation
of a powerful set of concepts that interrelates representations in the dynamic
runtime. This effectively operates as a dynamic subtyping of program execution.
We seek to formalize the interface to Hi-Res and make available rich property
based analysis with rigorous form methods and verification features. One such
endeavour will be to describe Hi-Res with a language and formalize the workings
sets as type system theory.

8 Conclusion

In this paper, we present an in-kernel exploit detector framework based on fine-
grained kernel behaviors. Our evaluation shows that the detectors can effectively
discriminate exploit attempts with acceptable overhead. We further evaluate the
detectors with different types of features and conclude that system call is the
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most effective feature while adding more features results in marginal benefits.
We believe that the Hi-Res and the exploration we conducted lay a foundation
for future data-driven kernel hardening mechanisms based on richer fine-grained
kernel behaviors and more sophisticated policies.
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