Hi-Res: Precise Exploit Detection using
Object-Granular Memory Monitoring

Ziyang Yang Saumya Solanki Scott Rixner Nathan Dautenhahn
Rice University Serenitix Rice University Dartmouth College
ziyang.yang @rice.edu saum @serenitix.10 rixner @rice.edu nathan.d.dautenhahn@dartmouth.edu

Presented by Nathan Dautenhahn




Problem: Exploits violate gaps to find unintended
*weird machines”

 Programmer specifies what they think is right

 But may miss some dynamic context leading to weirdness
* EXxploits operate within legal kernel operations

* They violate assumptions: scope, lifecycle, access context

e Kernel lacks runtime enforcement of object semantics




Gap: detection is low-resolution and bypassable

* Detection systems develop models from events
* Jypically, low-level or opaque, lacking context
* Lacks visibility into the *weird machine™ layers

* [eads to mimicry




Hypothesis: weirdness Is weird and
should be visible with the right context




Hypothesis: weirdness iIs weird and
should be visible with the right context

If it's used as a duck, it's a duck. If it quacks like a duck, it's a duck.

4




Solution: lift opaque, low-level traces into
behavioral grammars

Object-Sensitive: Hi-Res tracks memory at object granularity using lexical
scopes as types

Context-Sensitive: Accesses lifted into tuples: syscall, access IP, alloc IP,
call stack

Programmable: dynamic contexts can be selectively explored

Behavioral Grammars: Valid programs = stable grammar; exploits =
violations




Design: ITrace Lifting Pipeline

. Instrument allocation and memory access

. Maintain address-to-object map

. Capture syscall, call stack, context per access
. Construct tuple space for fingerprinting

. Develop grammars out of behavioral patterns for both benign and exploit




Challenges: Semantic Inference Without Labels or
Ground Truth and Efficient

« Memory is semantically opague
e Semantics must be inferred, not declared
e Kernel instrumentation must be efficient and selective

* Detection must be general and interpretable




Results: CVEs are easy to see with object granular
access grammars

5 kernel exploits, 20 normal workloads

* EXxploit traces show sparse, irregular
fingerprints

 Hi-Res separates classes with no false
positives

38

CVE-2021-31440
CVE-2021-3490
CVE-2022-0185
CVE-2022-0847
CVE-2022-2639

wget
whereis
whoami

pwd
rm
traceroute

tar -czvf
touch

CVE-2021-31440 g

CVE-2021-349(0 [¥o.080.080.080.020.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.09 0.01 0.02 0.03 0.02 0.02

O
o
o
o0
o
o
(o0]
o
o
o0
o
o
N
ot
o
N
o
o
[
o
o
[l
o
o
N
o
o
N
o

.010.010.010.010.020.010.100.010

o
V]
o
o
w
o
o
]
o
o
)

CVE-2022-0185 ¥ o.04[¥:%0.01 0.01 0.010.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.09 0.00 0.00 0.02 0.01 0.01
CVE-2022-084 7 ¥0.040.210.000.000.01 0.21 0.00 0.05 0.02 0.10 0.03 0.01 0.01 0.14 0.02 0.03 0.10 0.05 0.03
CVE-2022-2639 [¥40.010.010.010.010.010.000.01 0.00 0.01 0.00 0.01 0.00 0.09 0.00 0.00 0.02 0.01 0.01
apt o 000.00 o.01o.01 0.080.030.140.100.010.000.110.030.130.14 0.07 0.04

ca | I¥¥0.350.040.000.020.020.010.02 o.oo@o.os 0.020.020.010.030.010.14

Cd [¥840.010.000.000.01 0.00 0.00 0.00 0.29 0.00 0.01 0.00 0.00 0.02 0.00 0.06

O f ¥ 0.010.010.020.010.030.000.04 0.02 0.02 0.01 0.01 0.03 0.01 0.03

hd Parm plo.010.070.030.130.100.010.000.120.030.150.130.08 0.04

| N [¥880.010.010.010.010.020.020.01 0.01 0.01 0.02 0.01 0.02

| S [E0.070.090.030.02 0.01 0.08 0.010.050.02 0.04 0.11

Mkdir¥o.090.000.010.010.060.010.010.010.000.01

MV EE0.010.020.020.120.06 0.01 0.36 0.02 0.02

netperf M410]0.00 0.00 0.01 0.00 0.13 0.01 0.00 0.04

pwd 140.08 0.02 0.02 0.010.030.010.13

"M EXel0.07 0.020.010.010.000.04

tar -czvfiEo.010.020.050.070.03
touch [®o.010.050.020.02
traceroute [®o.o20.010.10
wget pldllo.030.03

whereis io.o1

whoami it

(1) (syscall, access_ip, alloc_ip, callstack)




LangSec Perspective

* Hi-Res defines a runtime language over memory use
* |t surfaces violations as syntactic outliers

 Not anomaly detection—semantic enforcement




Takeaways

Hi-Res, a programmable in-kernel framework for detecting kernel exploits
via object-granular memory monitoring

A method for lifting low-level memory traces into structured
behavioral grammars, enabling detection of semantic violations without
requiring labeled training data

A lightweight, page-table-based mechanism for per-process monitoring
that avoids global kernel instrumentation overhead

An empirical evaluation demonstrating great potential for prece, general,
and not terrible overhead in identifying exploit behavior

10







