
Hi-Res: Precise Exploit Detection using 
Object-Granular Memory Monitoring

Presented by Nathan Dautenhahn

1
1



Problem: Exploits violate gaps to find unintended 
*weird machines*

• Programmer specifies what they think is right


• But may miss some dynamic context leading to weirdness


• Exploits operate within legal kernel operations


• They violate assumptions: scope, lifecycle, access context


• Kernel lacks runtime enforcement of object semantics

2
2



Gap: detection is low-resolution and bypassable 

• Detection systems develop models from events


• Typically, low-level or opaque, lacking context


• Lacks visibility into the *weird machine* layers


• Leads to mimicry

3
3



Hypothesis: weirdness is weird and 
should be visible with the right context

4
4-1



Hypothesis: weirdness is weird and 
should be visible with the right context

4

If it's used as a duck, it's a duck. If it quacks like a duck, it's a duck.

4-2



Solution: lift opaque, low-level traces into 
behavioral grammars

• Object-Sensitive: Hi-Res tracks memory at object granularity using lexical 
scopes as types


• Context-Sensitive: Accesses lifted into tuples: syscall, access IP, alloc IP, 
call stack


• Programmable: dynamic contexts can be selectively explored


• Behavioral Grammars: Valid programs = stable grammar; exploits = 
violations

5
5



Design: Trace Lifting Pipeline

1. Instrument allocation and memory access


2. Maintain address-to-object map


3. Capture syscall, call stack, context per access


4. Construct tuple space for fingerprinting


5. Develop grammars out of behavioral patterns for both benign and exploit

6
6



Challenges: Semantic Inference Without Labels or 
Ground Truth and Efficient

• Memory is semantically opaque


• Semantics must be inferred, not declared


• Kernel instrumentation must be efficient and selective


• Detection must be general and interpretable

7
7



Results: CVEs are easy to see with object granular 
access grammars

• 5 kernel exploits, 20 normal workloads


• Exploit traces show sparse, irregular 
fingerprints


• Hi-Res separates classes with no false 
positives

8
8



LangSec Perspective

• Hi-Res defines a runtime language over memory use


• It surfaces violations as syntactic outliers


• Not anomaly detection—semantic enforcement

9
9



Takeaways
• Hi-Res, a programmable in-kernel framework for detecting kernel exploits 

via object-granular memory monitoring


• A method for lifting low-level memory traces into structured 
behavioral grammars, enabling detection of semantic violations without 
requiring labeled training data


• A lightweight, page-table-based mechanism for per-process monitoring 
that avoids global kernel instrumentation overhead


• An empirical evaluation demonstrating great potential for prece, general, 
and not terrible overhead in identifying exploit behavior

10
10



Fini!

11
11


