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Problem: Exploits violate gaps to find unintended
*weird machines”

 Programmer specifies what they think is right

 But may miss some dynamic context leading to weirdness
* EXxploits operate within legal kernel operations

* They violate assumptions: scope, lifecycle, access context

e Kernel lacks runtime enforcement of object semantics




Gap: detection is low-resolution and bypassable

* Detection systems develop models from events
* Jypically, low-level or opaque, lacking context
* Lacks visibility into the *weird machine™ layers

* [eads to mimicry




Hypothesis: weirdness Is weird and
should be visible with the right context




Hypothesis: weirdness iIs weird and
should be visible with the right context

If it's used as a duck, it's a duck. If it quacks like a duck, it's a duck.
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Solution: lift opaque, low-level traces into
behavioral grammars

Object-Sensitive: Hi-Res tracks memory at object granularity using lexical
scopes as types

Context-Sensitive: Accesses lifted into tuples: syscall, access IP, alloc IP,
call stack

Programmable: dynamic contexts can be selectively explored

Behavioral Grammars: Valid programs = stable grammar; exploits =
violations




Design: ITrace Lifting Pipeline

. Instrument allocation and memory access

. Maintain address-to-object map

. Capture syscall, call stack, context per access
. Construct tuple space for fingerprinting

. Develop grammars out of behavioral patterns for both benign and exploit




Challenges: Semantic Inference Without Labels or
Ground Truth and Efficient

« Memory is semantically opague
e Semantics must be inferred, not declared
e Kernel instrumentation must be efficient and selective

* Detection must be general and interpretable




Results: CVEs are easy to see with object granular
access grammars

5 kernel exploits, 20 normal workloads

* EXxploit traces show sparse, irregular
fingerprints

 Hi-Res separates classes with no false
positives
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(1) (syscall, access_ip, alloc_ip, callstack)




LangSec Perspective

* Hi-Res defines a runtime language over memory use
* |t surfaces violations as syntactic outliers

 Not anomaly detection—semantic enforcement




Takeaways

Hi-Res, a programmable in-kernel framework for detecting kernel exploits
via object-granular memory monitoring

A method for lifting low-level memory traces into structured
behavioral grammars, enabling detection of semantic violations without
requiring labeled training data

A lightweight, page-table-based mechanism for per-process monitoring
that avoids global kernel instrumentation overhead

An empirical evaluation demonstrating great potential for prece, general,
and not terrible overhead in identifying exploit behavior
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