
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Parsers
Daniel Wallach

DARPA

Information Innovation Office (I2O)

Workshop on Language-Theoretic Security (LangSec)

15 May 2025

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Parsers
Daniel Wallach

DARPA

Information Innovation Office (I2O)

Workshop on Language-Theoretic Security (LangSec)

15 May 2025

Parsers: The Fractal Attack Surface

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Parsers
Daniel Wallach

DARPA

Information Innovation Office (I2O)

Workshop on Language-Theoretic Security (LangSec)

15 May 2025

Parsers: The Fractal Attack SurfaceParsers: Threat or Menace?

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 2

What is a parser?

3

• Parsers convert (potentially untrusted) bytes to (potentially sensitive) internal data structures

• Parsers are the outer edge of the attack surface of every program!

• And, in C or C++, hand-written parsers are (allegedly) the source of 80% of CVEs

• Developers take shortcuts, make unsafe assumptions

• Example: Heartbleed OpenSSL bug: trusting a length field to be correct  attacker can read sensitive memory

Parsers (computer security perspective)

https://xkcd.com/1353/
DISTRIBUTION A: Approved for public release; Distribution is unlimited.CVE: Common Vulnerabilities and Exposures (https://www.cve.org/About/Overview)

https://xkcd.com/1353/
https://www.cve.org/About/Overview

4

• A language is a set of rules (a grammar) defined over words

• Automata theory: Different classes of grammars (e.g., “regular” vs. “context

free”) require different classes of machines to recognize them

• Words (or tokens) are defined over an alphabet

• Lexical analysis: Rules to convert from characters to tokens (typically defined
with regular expressions)

• So, what does a parser do?

• Accept all messages inside the language

• Reject all messages outside the language

• Sometimes lexical analysis and parsing are done in two separate phases,
sometimes all at once

• Parsers don’t (traditionally) enforce higher-level rules

• Static semantics analysis, done after parsing, enforces the rules of a

programming languages (e.g., type checking)

Parsers (formal languages perspective)

“Colorless green ideas sleep furiously” (Noam Chomsky, 1957) 
Grammatically correct text can still be semantic nonsense.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.Image credit: https://hightechhistory.wordpress.com/tag/noam-chomsky/

5

• Every computer program has data structures that represent its internal state

• Serializers convert internal data structures to external representations (bytes)

• Deserializers convert bytes back into internal data structures

• Other terms for this: marshalling/unmarshalling, pickling/unpickling

• Many attempts in CS history to create general-purpose serialization infrastructure

• ASN.1 (1984) defines textual and binary (“packed”) representations, used widely in telephony, cryptography

• Google’s Protocol Buffers are (in effect) a modern redo (and simplification) of ASN.1

• Write down message definitions in interface definition language (IDL), code synthesized automatically

• Also popular: human-readable plain-text data formats (XML, JSON, LISP S-expressions, YAML, etc.)

• Lots of extensions, e.g., JSON schemas, to enforce some (but not all) semantic rules

• And, of course, seemingly homebrew alternatives

• Streaming audio and video protocols (join in the middle of a stream, resync after errors)

• Dump the in-memory representation to disk (Microsoft Office’s original .doc, .xls, .ppt formats)

https://www.joelonsoftware.com/2008/02/19/why-are-the-microsoft-office-file-formats-so-complicated-and-some-
workarounds/

• All sorts of security ramifications (e.g., “fast save” appends to the file, so old text isn’t actually deleted)

Parsers (pragmatic perspective)

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://www.joelonsoftware.com/2008/02/19/why-are-the-microsoft-office-file-formats-so-complicated-and-some-workarounds/
https://www.joelonsoftware.com/2008/02/19/why-are-the-microsoft-office-file-formats-so-complicated-and-some-workarounds/

6

• Parsers are algebraic data types! We can combine small parsers into bigger parsers.

• Example JSON parser (written with the Angstrom parser combinator library for TypeScript)

Parsers (functional programming nerd perspective)

JSON spec for an array (json.org)

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

6

• Parsers are algebraic data types! We can combine small parsers into bigger parsers.

• Example JSON parser (written with the Angstrom parser combinator library for TypeScript)

Parsers (functional programming nerd perspective)

let parser =
 fix(parse => {
 let arrayParser =
 char('[') *> sep_by(comma, parse) <* char(']') >>|
 (a => Array(a));
 let member = lift2(pair, keyParser <* colon, parse);
 let objectParser =
 char('{') *> sep_by(comma, member) <* char('}') >>|
 (o => Object(o));

 peek_char_fail
 >>= (
 c =>
 switch (c) {
 | '"' => stringParser
 | 't'
 | 'f' => boolParser
 | 'n' => nullParser
 | '[' => arrayParser
 | '{' => objectParser
 | _ => numberParser
 }
);
 });

https://reasonml.chat/t/a-gentle-introduction-to-parser-
combinators-and-angstrom/2546

JSON spec for an array (json.org)

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://reasonml.chat/t/a-gentle-introduction-to-parser-combinators-and-angstrom/2546
https://reasonml.chat/t/a-gentle-introduction-to-parser-combinators-and-angstrom/2546

6

• Parsers are algebraic data types! We can combine small parsers into bigger parsers.

• Example JSON parser (written with the Angstrom parser combinator library for TypeScript)

Parsers (functional programming nerd perspective)

let parser =
 fix(parse => {
 let arrayParser =
 char('[') *> sep_by(comma, parse) <* char(']') >>|
 (a => Array(a));
 let member = lift2(pair, keyParser <* colon, parse);
 let objectParser =
 char('{') *> sep_by(comma, member) <* char('}') >>|
 (o => Object(o));

 peek_char_fail
 >>= (
 c =>
 switch (c) {
 | '"' => stringParser
 | 't'
 | 'f' => boolParser
 | 'n' => nullParser
 | '[' => arrayParser
 | '{' => objectParser
 | _ => numberParser
 }
);
 });

https://reasonml.chat/t/a-gentle-introduction-to-parser-
combinators-and-angstrom/2546

sep
_by

 (separate by) “c
ombines” th

e co
mma

 parser

with the top-level value parser
JSON spec for an array (json.org)

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://reasonml.chat/t/a-gentle-introduction-to-parser-combinators-and-angstrom/2546
https://reasonml.chat/t/a-gentle-introduction-to-parser-combinators-and-angstrom/2546

6

• Parsers are algebraic data types! We can combine small parsers into bigger parsers.

• Example JSON parser (written with the Angstrom parser combinator library for TypeScript)

Parsers (functional programming nerd perspective)

let parser =
 fix(parse => {
 let arrayParser =
 char('[') *> sep_by(comma, parse) <* char(']') >>|
 (a => Array(a));
 let member = lift2(pair, keyParser <* colon, parse);
 let objectParser =
 char('{') *> sep_by(comma, member) <* char('}') >>|
 (o => Object(o));

 peek_char_fail
 >>= (
 c =>
 switch (c) {
 | '"' => stringParser
 | 't'
 | 'f' => boolParser
 | 'n' => nullParser
 | '[' => arrayParser
 | '{' => objectParser
 | _ => numberParser
 }
);
 });

https://reasonml.chat/t/a-gentle-introduction-to-parser-
combinators-and-angstrom/2546

JSON spec for an array (json.org)

peek_char_fail decides which parser to use

based on the next character in the input

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://reasonml.chat/t/a-gentle-introduction-to-parser-combinators-and-angstrom/2546
https://reasonml.chat/t/a-gentle-introduction-to-parser-combinators-and-angstrom/2546

6

• Parsers are algebraic data types! We can combine small parsers into bigger parsers.

• Example JSON parser (written with the Angstrom parser combinator library for TypeScript)

Parsers (functional programming nerd perspective)

let parser =
 fix(parse => {
 let arrayParser =
 char('[') *> sep_by(comma, parse) <* char(']') >>|
 (a => Array(a));
 let member = lift2(pair, keyParser <* colon, parse);
 let objectParser =
 char('{') *> sep_by(comma, member) <* char('}') >>|
 (o => Object(o));

 peek_char_fail
 >>= (
 c =>
 switch (c) {
 | '"' => stringParser
 | 't'
 | 'f' => boolParser
 | 'n' => nullParser
 | '[' => arrayParser
 | '{' => objectParser
 | _ => numberParser
 }
);
 });

https://reasonml.chat/t/a-gentle-introduction-to-parser-
combinators-and-angstrom/2546

JSON spec for an array (json.org)

Parser
combinator
code looks

(more) like an
English spec.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://reasonml.chat/t/a-gentle-introduction-to-parser-combinators-and-angstrom/2546
https://reasonml.chat/t/a-gentle-introduction-to-parser-combinators-and-angstrom/2546

6

• Parsers are algebraic data types! We can combine small parsers into bigger parsers.

• Example JSON parser (written with the Angstrom parser combinator library for TypeScript)

Parsers (functional programming nerd perspective)

let parser =
 fix(parse => {
 let arrayParser =
 char('[') *> sep_by(comma, parse) <* char(']') >>|
 (a => Array(a));
 let member = lift2(pair, keyParser <* colon, parse);
 let objectParser =
 char('{') *> sep_by(comma, member) <* char('}') >>|
 (o => Object(o));

 peek_char_fail
 >>= (
 c =>
 switch (c) {
 | '"' => stringParser
 | 't'
 | 'f' => boolParser
 | 'n' => nullParser
 | '[' => arrayParser
 | '{' => objectParser
 | _ => numberParser
 }
);
 });

https://reasonml.chat/t/a-gentle-introduction-to-parser-
combinators-and-angstrom/2546

Parser
combinator
code looks

(more) like an
English spec.

Notably absent: error-
handling code. (But it’s still

there under the hood.)

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://reasonml.chat/t/a-gentle-introduction-to-parser-combinators-and-angstrom/2546
https://reasonml.chat/t/a-gentle-introduction-to-parser-combinators-and-angstrom/2546

7

How hard is it to write a parser?

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 8

CVEs for JSON parsers in C and C++

“Find all the CVEs for popular C and C++ JSON parsers and categorize the vulnerabilities.”

(Gemini 2.0 Flash, “Deep Research”, May 2025. “Gemini can make mistakes, so double-check it”)

Image credit: https://vlipsy.com/vlip/spongebob-squarepants-a-little-longer-than-a-few-minutes-later-pTepukCR

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 8

CVEs for JSON parsers in C and C++

“Find all the CVEs for popular C and C++ JSON parsers and categorize the vulnerabilities.”

(Gemini 2.0 Flash, “Deep Research”, May 2025. “Gemini can make mistakes, so double-check it”)

Image credit: https://vlipsy.com/vlip/spongebob-squarepants-a-little-longer-than-a-few-minutes-later-pTepukCR

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 9

• Lexical analysis / tokenization vulnerabilities

A sampling of parser CVEs for JSON in C and C++

CVE ID Affected Library Description Severity

CVE-2016-4303 cJSON Mishandling of
UTF8/16 strings in
parse_string leading
to heap-based
buffer overflow

Unknown

CVE-2016-10749 cJSON Buffer over-read in
parse_string when
string ends with
backslash

Unknown

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 10

• Data handling and semantic interpretation vulnerabilities

A sampling of parser CVEs for JSON in C and C++

CVE ID Affected Library Description Severity

CVE-2024-38517 RapidJSON Integer underflow in
GenericReader::Pars
eNumber()

High

CVE-2024-39684 RapidJSON Integer overflow in
GenericReader::Pars
eNumber()

High

CVE-2023-26819 cJSON Denial of service via
crafted JSON
document with a
large number

Low

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 11

• Memory management vulnerabilities

A sampling of parser CVEs for JSON in C and C++

CVE ID Affected Library Description Severity
SNYK-UNMANAGED-
NLOHMANNJSON-638736
7

nlohmann/json Heap-based buffer overflow during CBOR parsing
due to unclosed UTF-8 string

High

CVE-2019-15550 simdjson Out-of-bounds read and incorrect crossing of a
page boundary

High

SNYK-RUST-
SIMDJSONDERIVE-837021
0

simdjson-derive Access of uninitialized pointer due to misuse of
MaybeUninit (Rust)

High

CVE-2021-32292 json-c Stack-buffer-overflow in parseit function of
json_parse sample program

Critical

CVE-2020-12762 json-c Integer overflow and out-of-bounds write via large
JSON file

Unknown

CVE-2023-50471 cJSON Segmentation violation via
cJSON_InsertItemInArray

High

CVE-2023-50472 cJSON Segmentation violation via cJSON_SetValuestring Unknown

CVE-2024-31755 cJSON Segmentation violation via cJSON_SetValuestring Unknown

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 11

• Memory management vulnerabilities

A sampling of parser CVEs for JSON in C and C++

CVE ID Affected Library Description Severity
SNYK-UNMANAGED-
NLOHMANNJSON-638736
7

nlohmann/json Heap-based buffer overflow during CBOR parsing
due to unclosed UTF-8 string

High

CVE-2019-15550 simdjson Out-of-bounds read and incorrect crossing of a
page boundary

High

SNYK-RUST-
SIMDJSONDERIVE-837021
0

simdjson-derive Access of uninitialized pointer due to misuse of
MaybeUninit (Rust)

High

CVE-2021-32292 json-c Stack-buffer-overflow in parseit function of
json_parse sample program

Critical

CVE-2020-12762 json-c Integer overflow and out-of-bounds write via large
JSON file

Unknown

CVE-2023-50471 cJSON Segmentation violation via
cJSON_InsertItemInArray

High

CVE-2023-50472 cJSON Segmentation violation via cJSON_SetValuestring Unknown

CVE-2024-31755 cJSON Segmentation violation via cJSON_SetValuestring Unknown

Unsafe Rust, n
ot C or C++

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 11

• Memory management vulnerabilities

A sampling of parser CVEs for JSON in C and C++
7
CVE-2019-15550 simdjson Out-of-bounds read and incorrect crossing of a

page boundary
High

SNYK-RUST-
SIMDJSONDERIVE-837021
0

simdjson-derive Access of uninitialized pointer due to misuse of
MaybeUninit (Rust)

High

CVE-2021-32292 json-c Stack-buffer-overflow in parseit function of
json_parse sample program

Critical

CVE-2020-12762 json-c Integer overflow and out-of-bounds write via large
JSON file

Unknown

CVE-2023-50471 cJSON Segmentation violation via
cJSON_InsertItemInArray

High

CVE-2023-50472 cJSON Segmentation violation via cJSON_SetValuestring Unknown

CVE-2024-31755 cJSON Segmentation violation via cJSON_SetValuestring
with NULL argument

Unknown

CVE-2018-1000217 cJSON Use After Free vulnerability High
CVE-2019-11834 cJSON Out-of-bounds access related to multiline

comments
Unknown

CVE-2019-11835 cJSON Out-of-bounds access related to \x00 in string
literal

Unknown

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 12

• Error handling and input validation vulnerabilities

A sampling of parser CVEs for JSON in C and C++

CVE ID Affected Library Description Severity

CVE-2024-38525 dd-trace-cpp (using
nlohmann/json)

Uncaught exception when logging
malformed unicode

High

CVE-2024-34363 Envoy (using nlohmann/
json)

Uncaught exception when serializing
incomplete UTF-8 strings

High

CVE-2019-1010239 cJSON Null dereference in
cJSON_GetObjectItemCaseSensitiv
e() due to improper condition check

High

AIKIDO-2024-10263 JsonCpp Out-of-bounds read in
getLocationLineAndColumn during
error message generation

Low

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 13

• Denial of service

A sampling of parser CVEs for JSON in C and C++

CVE ID Affected Library Description Severity

CVE-2013-6401 Jansson Predictable hash collisions
leading to denial of service

Medium

14

• Required sophomore CS class at Rice, introduces Java programming

• Taught by me, 2014-2019

• Two-week student assignment: write a JSON parser (week 1: tokenize, week 2: recursive parsing)

• Observations & bugs:

• I provided string escaping/unescaping; Apache Commons String library failed a simple fuzz test

• Java’s regular expression engine ran out of memory matching individual strings greater than 10KB

• Flex (lexical analysis, code synthesis tool) worked correctly

• Some students would look ahead more than one token: Slow and incorrect!

• Sophisticated tests (property-based testing / fuzzing) helped students fix their bugs

• Subtle details matter

• Not every float can be represented in JSON (NaN, +/-Infinity)

• JSON can express big integers; should we support Java’s BigInteger class?

• Undefined by JSON: what should happen if you see the same key twice in a JSON object?

• In subsequent weeks, students had to write code to convert data to/from JSON

• JSON deserialization requires manual checks for data semantics

Rice Comp215 (“Introduction to Program Design”)

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

15

• Memory-safe programming languages (roughly, everything but C and C++) guarantee your code will
behave in a deterministic, well-defined way

• E.g., Reading beyond the end of an array is defined to fail predictably, rather than be a security attack vector

• Memory safety would have defeated the Heartbleed vulnerability (and many, many others)

• A buggy parser, even in a safe language, can still be bad for security

• Security decisions are made based on the outputs of parsers

• Code injection attacks (cross-site scripting, SQL injection) can be viewed as attacks on parsers

But Java is a safe programming language!

https://xkcd.com/327/ DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://xkcd.com/327/

16

SafeDocs: Hardened parsers for legacy software

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 17

Why Safe Documents (SafeDocs)?

Precise format definitions -- We need them here, everywhere, yesterday!
• As descriptions of interfaces, it’s critical that the definitions of data formats be explicit, machine-readable, and

unambiguous
• But in practice, they’re not: e.g., PDF ISO standard is 984 pages, with 100+ ambiguities found by the SafeDocs

program alone

• Secondary consequence: With no specification, it is impossible to verify parsers
• Problem has been cleanly defined since computing’s antiquity, so why isn’t it actually solved?

• One extreme: Context free grammars are well understood, but can’t describe actual formats

• Other extreme: Parser combinators are powerful but don’t shield a (possibly non-programmer) format expert

from creating unsafe semantic actions (which are needed to validate formats!)

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 18

SafeDocs objective met?

Hypothesis: Formal methods are effective for defining and safely ingesting secure parsers for complex and widely
deployed real-world formats with divergent implementations

• SafeDocs researchers developed new methods and tools to allow people to trust what they see on their screens
and to click confidently on documents

• SafeDocs advanced the state of the art in verification of the security of data format parsers and eliminated the
primary source of preventable, parsing vulnerabilities

• SafeDocs program enabled a huge step towards the DARPA vision of a world without software
vulnerabilities

• Hypothesis was met

SafeDocs impact: The Arlington PDF Model (named after DARPA site)

• First vendor-neutral, open-source, specification-derived, machine and human-readable definition of PDF

objects (across all version of the standard 1.6-2.0)

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Arlington PDF model

First open access, vendor neutral, specification-derived, machine
readable definition of every PDF 2.0 object

Set of 515 text-based TSV files -- Single PDF object per TSV

• Structured data: 12 columns with custom predicates

• >3,500 rows

• >1700 assertions using 39 unique predicates

• No-code accessible:

• EBay “big data” tsv-utilities, Linux CLI

• Low-effort programmatic consumption

• Python, C++, Java

• Validated against a vendor proprietary model  
and >10^6 files of extant data

SafeDocs: 100+ issues discovered in ISO 32000-2  
(PDF 2.0), over 600 issues in SoTA PDF software

https://github.com/pdf-association/arlington-pdf-model

CUI

19

https://github.com/pdf-association/arlington-pdf-model

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 20

Document complexity leads to vulnerabilities

Users of past PDF standard had to deal
with 1,000 pages of this mess

SafeDocs approach: Prose  structured data

SafeDocs tools targeting the electronic documents community

Document
s

1100111 Verified
Parser

Safe document

Simplified
safe format

21

SafeDocs identified and submitted fixes for 100+
ambiguities in the ISO 32000-2 PDF standard that
are a source of vulnerabilities:

• “Frankenstein” objects that allow ambiguous
interpretation [information hiding]

• Excessive object indirection, ambiguities in dictionary
object structure (e.g., indirect keys) 
[parser exploitation, detection evasion]

• Ambiguities in allowed object nesting (e.g., streams in
arrays) [parser exploitation]

Feedback to PDF industry

and standards bodies

Format comprehension tools

released to the open source
community

PolyFile

First dedicated tool for exploring polyglot
and “schizophrenic” file phenomena

• Deep inspection of a file’s bytes

• Extensible, based on TrID and KaiTai

struct data definitions

First dedicated tool for intelligent tracing of
parsers written in C/C++

• Instruments a parser to output a map from
each input byte to parser functions

• Scales to real parsers, via novel data flow
tracking techniquePolyTracker

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 22

SafeDocs highlights: Data Definition Languages (DDL), format models

Daedalus (Galois, Inc.)

Parsley DDL (SRI)

Image credits:

[1] https://en.wikipedia.org/wiki/Icarus#/media/File:Gowy-icaro-prado.jpg

[2] Natarajan Shankar, SRI

[3] Meredith L. Patterson, Special Circumstances LLC

[4] PDF Association

(1) (2)

Hammer/VALARIN
(Special Circumstances/
Riverside Research)

(3)

(4)

Arlington PDF Model
(PDF Association)

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 23

• A framework for defining and parsing practical formats, consisting of

• An expressive Data Definition Language (DDL)

• A high-assurance parser generator	

• Used to define and parse ~14K lines of practical formats

• PDF, IccMAX, National Imagery Transmission Format (NITF), Data Distribution

Service (DDS), Micro Air Vehicle Link (MAVLink), ...

• Parser-generator targets C++ and Haskell, depending on parser client and

constraints on performance

• Implements an efficient ownership-based memory manager

• Latest PDF/NITF parsers have been tested on billions of documents/10^3 of

CPU hours with 0 errors found

• Implements Language Server Protocol (LSP): Can be written, type-checked,

and tested in Visual Studio Code (VSCode), Editing MACros (Emacs), ...

Daedalus

Key features: Succinct definitions with higher-order parsers, precise definitions with data-dependent
binds, practical definitions with first-class input streams (i.e., streams can be bound and parsed
multiple times)

Available at github.com/GaloisInc/daedalus

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 24

ICC color profiles and IccMAX in Daedalus

• Language of color profiles: Translations between color spaces (e.g., RGB or CMYK)

• Standardized as ISO 20677:2019 standard for image technology color management across

major operating systems, medical imaging, high-resolution imagery

• 2020 flaw in Android's ICC profile handling disabled phones when a flaw-triggering image

was set as background -- SafeDocs explicated the root cause of the bug:

 https://www.riverloopsecurity.com/blog/2020/07/android-systemui-icc/

• Worked with the PDF Association to define format in 537 LOC
• Key technical challenge: Format specified using complex stream arithmetic

• Can be defined in ~10 lines in DaeDaLus!

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 25

SafeDocs ParseLab (Lockheed Martin Advanced Technology Labatories)

• What is it?

• ParseLab is a modular framework for generating

protocol parsers as well as inputs necessary to
validate and test generated parsers

• How can ParseLab be used?

• Generate syntactic parsers for protocol messages

• Generate invalid and valid binary packet data based

on the specification (specification guided fuzzing)

• Generate unit tests to validate generated modules

• What do I have to specify to use ParseLab?

• Protocol specification file with message fields, data

types and constraints

• Parser toolkit generator module (Hammer

supported)

ParseLab is a tool that enables rapid parser development, data generation and validation

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 26

SafeDocs’ ParseLab tool motivation for transition to the defense industrial base

Bridge the design
implementation gap
between system design
and parser
development

Generation of secured
parsers using Model-Based
Systems Engineering (MBSE)
tools without the need for
expertise in formal methods

Validate parser
implementations
against specified
syntax and semantics

parseLab allows system engineers to create secure parsers without needing
formal methods expertise

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 27

SafeDocs transition effort

• Currently expanding the capabilities of parseLab and Hammer for a DoD transition partner to provide
resilient parsing of binary protocol messages within a platform systems of systems

• Extension of these capabilities include:

• Legacy sensor hardening: Augmenting the authentication process for legacy platform sensors using their
protocols (such as X11) with deep-message validation from secure parsers generated from Google Protocol
Buffers (GPB) .PROTO specifications

• Systems engineering transition: Reducing the gap between design and implementation by integrating
systems engineering tools (e.g., Cameo) and protocol parser generators to enable specification of constraints
and semantics of system interactions to auto-generate secure parsers -- thereby reducing the gap between
design and implementation

• Support for operational requirements: Expanding parser generation to include parsers for GPB on-the-wire
binary format and validating the serialized data to include constraints without deserializing the data first to
support the ubiquitous usage of GPB-encoded data throughout platform systems

Focus on maturing features for use with an operational platform release

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 28

• But it’s in C, tuned for performance

• Works for binary and text formats

• ParseLab takes high-level input, emits

Hammer code

How does Hammer work? It’s another parser combinator!

void init_parser() {
 /* Whitespace */
 H_RULE(ws, h_in((uint8_t*)" \r\n\t", 4));
 /* Structural tokens */
 H_RULE(left_square_bracket,
 h_middle(h_many(ws), h_ch('[‘), h_many(ws)));
 H_RULE(right_square_bracket,
 h_middle(h_many(ws), h_ch(']’), h_many(ws)));
 H_RULE(comma, h_middle(h_many(ws), h_ch(','), h_many(ws)));

…

 /* Forward declarations */
 HParser *value = h_indirect();

…

 /* Arrays */
 H_ARULE(json_array,
 h_middle(left_square_bracket,
 h_sepBy(value, comma),
 right_square_bracket));

https://github.com/sergeybratus/HammerPrimer/blob/master/lecture_13/json.c

https://github.com/sergeybratus/HammerPrimer/blob/master/lecture_13/json.c

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 28

• But it’s in C, tuned for performance

• Works for binary and text formats

• ParseLab takes high-level input, emits

Hammer code

How does Hammer work? It’s another parser combinator!

void init_parser() {
 /* Whitespace */
 H_RULE(ws, h_in((uint8_t*)" \r\n\t", 4));
 /* Structural tokens */
 H_RULE(left_square_bracket,
 h_middle(h_many(ws), h_ch('[‘), h_many(ws)));
 H_RULE(right_square_bracket,
 h_middle(h_many(ws), h_ch(']’), h_many(ws)));
 H_RULE(comma, h_middle(h_many(ws), h_ch(','), h_many(ws)));

…

 /* Forward declarations */
 HParser *value = h_indirect();

…

 /* Arrays */
 H_ARULE(json_array,
 h_middle(left_square_bracket,
 h_sepBy(value, comma),
 right_square_bracket));

JSON spec for an array (json.org)

https://github.com/sergeybratus/HammerPrimer/blob/master/lecture_13/json.c

https://github.com/sergeybratus/HammerPrimer/blob/master/lecture_13/json.c

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 28

• But it’s in C, tuned for performance

• Works for binary and text formats

• ParseLab takes high-level input, emits

Hammer code

How does Hammer work? It’s another parser combinator!

void init_parser() {
 /* Whitespace */
 H_RULE(ws, h_in((uint8_t*)" \r\n\t", 4));
 /* Structural tokens */
 H_RULE(left_square_bracket,
 h_middle(h_many(ws), h_ch('[‘), h_many(ws)));
 H_RULE(right_square_bracket,
 h_middle(h_many(ws), h_ch(']’), h_many(ws)));
 H_RULE(comma, h_middle(h_many(ws), h_ch(','), h_many(ws)));

…

 /* Forward declarations */
 HParser *value = h_indirect();

…

 /* Arrays */
 H_ARULE(json_array,
 h_middle(left_square_bracket,
 h_sepBy(value, comma),
 right_square_bracket));

JSON spec for an array (json.org)

h_sepBy (separate by) combinator,  

same as we saw earlier

https://github.com/sergeybratus/HammerPrimer/blob/master/lecture_13/json.c

https://github.com/sergeybratus/HammerPrimer/blob/master/lecture_13/json.c

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 29

• No surprise, more parser-combinators

• Macros could have made this easier for humans

to write, but they pulled macros out in Nom 5.0
for better debugging & compiler performance

• Broad thoughts

• Parser-combinators seem to be a crowd favorite

• But they don’t help much with static semantics

checks

And, while we’re at it, how about nom in Rust?
fn array<'a, E: ParseError<&'a str> + ContextError<&'a str>>(
 i: &'a str,
) -> IResult<&'a str, Vec<JsonValue>, E> {
 context(
 "array",
 preceded(
 char('['),
 cut(terminated(
 separated_list0(preceded(sp, char(',')), json_value),
 preceded(sp, char(']')),
)),
),
)
 .parse(i)
}

https://github.com/rust-bakery/nom/blob/main/
examples/json.rs

https://github.com/rust-bakery/nom/blob/main/examples/json.rs
https://github.com/rust-bakery/nom/blob/main/examples/json.rs

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 29

• No surprise, more parser-combinators

• Macros could have made this easier for humans

to write, but they pulled macros out in Nom 5.0
for better debugging & compiler performance

• Broad thoughts

• Parser-combinators seem to be a crowd favorite

• But they don’t help much with static semantics

checks

And, while we’re at it, how about nom in Rust?
fn array<'a, E: ParseError<&'a str> + ContextError<&'a str>>(
 i: &'a str,
) -> IResult<&'a str, Vec<JsonValue>, E> {
 context(
 "array",
 preceded(
 char('['),
 cut(terminated(
 separated_list0(preceded(sp, char(',')), json_value),
 preceded(sp, char(']')),
)),
),
)
 .parse(i)
}

https://github.com/rust-bakery/nom/blob/main/
examples/json.rs

sep
ara

ted
_li

st0
, sa

me as w
e sa

w earlie
r

https://github.com/rust-bakery/nom/blob/main/examples/json.rs
https://github.com/rust-bakery/nom/blob/main/examples/json.rs

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 30

• Daedalus defines its own functional programming
language for writing parsers

• Concise syntax for doing parser combinators

• Provably safe output synthesized for C++ or Haskell

• Some really interesting features

• Parsers can reason about non-local data (e.g., table of

contents with offsets for actual data)

• Support for eager or lazy parsing, streaming

• Static semantics rules are just Daedalus code

• Runtime performance: sometimes 3-5x faster than
other parser generators!

• Externally red-teamed PDF parser

• Bonus feature: Talos uses the Daedalus rules to

synthesize valid inputs (you get a fuzzer for free)

Getting fancier: Daedalus

def JSON_value =
 First
 Null = JSON_null
 Bool = JSON_bool
 Number = JSON_number
 String = JSON_string
 Array = JSON_array_of JSON_value
 Object = JSON_object_of JSON_value

def JSON_array_of P =
 block
 $['[']
 let buf =
 case Optional (JSON_ws_then P) of
 nothing -> builder
 just v -> emit builder v
 $$ = build
 (many (buf = buf)
 block
 JSON_ws_then $[',']
 emit buf (JSON_ws_then P)
)
 JSON_ws_then $[']']

https://dl.acm.org/doi/pdf/10.1145/3656410 (PLDI 2024 paper)

https://dl.acm.org/doi/pdf/10.1145/3656410

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 30

• Daedalus defines its own functional programming
language for writing parsers

• Concise syntax for doing parser combinators

• Provably safe output synthesized for C++ or Haskell

• Some really interesting features

• Parsers can reason about non-local data (e.g., table of

contents with offsets for actual data)

• Support for eager or lazy parsing, streaming

• Static semantics rules are just Daedalus code

• Runtime performance: sometimes 3-5x faster than
other parser generators!

• Externally red-teamed PDF parser

• Bonus feature: Talos uses the Daedalus rules to

synthesize valid inputs (you get a fuzzer for free)

Getting fancier: Daedalus

def JSON_value =
 First
 Null = JSON_null
 Bool = JSON_bool
 Number = JSON_number
 String = JSON_string
 Array = JSON_array_of JSON_value
 Object = JSON_object_of JSON_value

def JSON_array_of P =
 block
 $['[']
 let buf =
 case Optional (JSON_ws_then P) of
 nothing -> builder
 just v -> emit builder v
 $$ = build
 (many (buf = buf)
 block
 JSON_ws_then $[',']
 emit buf (JSON_ws_then P)
)
 JSON_ws_then $[']']

https://dl.acm.org/doi/pdf/10.1145/3656410 (PLDI 2024 paper)

Parsers passed as arguments to parsers!

Note: recursive definitions are allowed.

https://dl.acm.org/doi/pdf/10.1145/3656410

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 30

• Daedalus defines its own functional programming
language for writing parsers

• Concise syntax for doing parser combinators

• Provably safe output synthesized for C++ or Haskell

• Some really interesting features

• Parsers can reason about non-local data (e.g., table of

contents with offsets for actual data)

• Support for eager or lazy parsing, streaming

• Static semantics rules are just Daedalus code

• Runtime performance: sometimes 3-5x faster than
other parser generators!

• Externally red-teamed PDF parser

• Bonus feature: Talos uses the Daedalus rules to

synthesize valid inputs (you get a fuzzer for free)

Getting fancier: Daedalus

def JSON_value =
 First
 Null = JSON_null
 Bool = JSON_bool
 Number = JSON_number
 String = JSON_string
 Array = JSON_array_of JSON_value
 Object = JSON_object_of JSON_value

def JSON_array_of P =
 block
 $['[']
 let buf =
 case Optional (JSON_ws_then P) of
 nothing -> builder
 just v -> emit builder v
 $$ = build
 (many (buf = buf)
 block
 JSON_ws_then $[',']
 emit buf (JSON_ws_then P)
)
 JSON_ws_then $[']']

https://dl.acm.org/doi/pdf/10.1145/3656410 (PLDI 2024 paper)

First a JSON value, or nothing at all

https://dl.acm.org/doi/pdf/10.1145/3656410

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 30

• Daedalus defines its own functional programming
language for writing parsers

• Concise syntax for doing parser combinators

• Provably safe output synthesized for C++ or Haskell

• Some really interesting features

• Parsers can reason about non-local data (e.g., table of

contents with offsets for actual data)

• Support for eager or lazy parsing, streaming

• Static semantics rules are just Daedalus code

• Runtime performance: sometimes 3-5x faster than
other parser generators!

• Externally red-teamed PDF parser

• Bonus feature: Talos uses the Daedalus rules to

synthesize valid inputs (you get a fuzzer for free)

Getting fancier: Daedalus

def JSON_value =
 First
 Null = JSON_null
 Bool = JSON_bool
 Number = JSON_number
 String = JSON_string
 Array = JSON_array_of JSON_value
 Object = JSON_object_of JSON_value

def JSON_array_of P =
 block
 $['[']
 let buf =
 case Optional (JSON_ws_then P) of
 nothing -> builder
 just v -> emit builder v
 $$ = build
 (many (buf = buf)
 block
 JSON_ws_then $[',']
 emit buf (JSON_ws_then P)
)
 JSON_ws_then $[']']

Then, zero or more blocks, each 

with a comma then a JSON value

https://dl.acm.org/doi/pdf/10.1145/3656410 (PLDI 2024 paper)

https://dl.acm.org/doi/pdf/10.1145/3656410

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
 31

• DARPA V-SPELLS project: sophisticated whole-program source and binary code analysis tools

• Phase 3 challenge (ongoing): aid the developer to extract a parser from an existing program

• Even if the codebase has parsing logic spread out across many locations (“shotgun parser”)

• Wouldn’t it be nice to help the developer replace their shotgun parser with something robust?

• The V-SPELLS BAE & Purdue team asked a related question: could we use this to find parser bugs?

Work in progress: semi-automatic parser extraction

V-SPELLS: Verified Security and Performance Enhancement of Large Legacy Software 
https://www.darpa.mil/research/programs/verified-security-and-performance-enhancement-of-large-legacy-software

https://www.darpa.mil/research/programs/verified-security-and-performance-enhancement-of-large-legacy-software

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

• What is 5G

• The fifth generation mobile network standard.

• Supports faster data rates, low latency, and massive device connectivity.

• Powers enhanced mobile broadband, IoT, and mission-critical communications

• Layers of Protocols in 5G

• Radio Access Network (RAN) Protocols (between devices and base stations), e.g., NR,

RRC, …

• Core Network Protocols (5G Core - 5GC), i.e., NGAP, SCTP, PFCP,  
and GTP

• Security & Authentication Protocols, e.g., 5G-AKA, IPSec,…

• Open5Gs

• Open-source 5G Core implementation (5GC & EPC)

• 2,000+ GitHub stars, 800+ forks, used widely in research and testing

Investigating 5G network protocols

NGAP NG Application Protocol

SCTP Stream Control Transmission
Protocol

PFCP Packet Forwarding Control Protocol

GTP GPRS Tunnelling Protocol 
(GPRS = General Packet Radio
Service)

AKA Authentication and Key
management

S1AP S1 Application Protocol 
(S1 = 4G interoperation mode)

5GC 5G Core

EPC Evolved Packet Core

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

• Each RFC may refer to many other RFCs

• TCP has only 8 message types, which share the same header; in contrast, 5G

core has close to 300 message types

• Heavily using set of unordered elements, which are in the form of Type-Length-

Value (TLV)

• Heavily use CHOICE (similar to Union in C)

• Each message type has on average 20 variants, i.e., 120*20=2400 variants for

NGAP

Open5Gs Core Protocols Are Complex

Protocols RFC pages Parsing Source Files Schema Files Field Definition Lines Message Types

NGAP 469 153 2135 / 120

S1AP 379 153 1336 / 98

PFCP 389 43 / 7184 25

GTP-v2 414 32 / 4509 31

RFC: Request for Comments (standards document)

NGAP NG Application Protocol

SCTP Stream Control Transmission
Protocol

PFCP Packet Forwarding Control Protocol

GTP GPRS Tunnelling Protocol 
(GPRS = General Packet Radio
Service)

AKA Authentication and Key
management

S1AP S1 Application Protocol 
(S1 = 4G interoperation mode)

5GC 5G Core

EPC Evolved Packet Core

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Neural-Symbolic Approach in Lifting and Checking

LLM

schemas

header files

parser code

semantic
constraints

program
analysis

syntactic
constraints

lifted 5G SPEC 5G fuzzer

invalid messages to remove
hallucination in lifting

Bugs

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Protocols Spec
pages

Parsing
Files

Schema
Files

Item Definition
Lines

Message
Types

Bugs Confirmed

NGAP 469 153 2135 / 120 3 2
S1AP 379 153 1336 / 98 2 2
PFCP 389 43 / 7184 25 21 21

GTP-v2 414 32 / 4509 31 16 16

• 37 bugs in PFCP and GTPV2 cause stack/heap overflow, integer overflow or
assertion failure, resulting in either arbitrary code execution or DDoS attack that
crash the server.

• The root cause is that when parsing a sub field in the message, the

program lacks the validity check. For example, it misses the length check
of the sub field and directly call memcpy, causing overflow.

• 5 functional bugs are in NGAP (3) and S1AP (2) that trigger assertion, resulting

in DDoS attack that crash the server. The root cause is the incorrect order of
packet received.

Zero-Day Bugs Found in Open5Gs

NGAP NG Application Protocol

SCTP Stream Control Transmission
Protocol

PFCP Packet Forwarding Control Protocol

GTP GPRS Tunnelling Protocol 
(GPRS = General Packet Radio
Service)

AKA Authentication and Key
management

S1AP S1 Application Protocol 
(S1 = 4G interoperation mode)

5GC 5G Core

EPC Evolved Packet Core

www.darpa.mil

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

