
Research Report: AI Security is a LangSec Problem
Max von Hippel

Benchify, Inc.
San Francisco, USA

Email: max@benchify.com

Evan Miyazono
Atlas Computing

San Francisco, USA
Email: evan@atlascomputing.org

Abstract—The rapid development of Artificial Intelligence (AI)
systems, and particularly Large Language Models (LLMs), has
already started changing how software is written in industry. In
this work, we categorize two important features of modern AI
systems – structured outputs and tool-use – and explain how the
security of each is, inherently, a LangSec problem. We provide
anecdotal evidence from the San Francisco startup ecosystem
to illustrate how companies are currently using, deploying,
and securing AI systems with these features. Based on these
observations and our analysis of current practices, we identify
three concrete research directions where the LangSec community
can contribute to securing both the parsing of LLM outputs and
the safe deployment of LLM-powered tools. This work should
be read as a call-to-action for the LangSec community to tackle
outstanding, and growing, security problems catalyzed by AI.

I. INTRODUCTION

While machine learning dates back to the 1950s [1], histor-
ically models were special-purpose, trained for specific tasks
like facial recognition or anomaly detection. This changed dra-
matically with OpenAI’s release of ChatGPT in late 2022 [2],
which demonstrated unprecedented capabilities in generating
natural text and code from arbitrary prompts.

Since then, progress in Large Language Model (LLM) based
artificial intelligence has accelerated rapidly. The computa-
tional resources used in model training have grown by approx-
imately half an order of magnitude annually [3], and novel
architectural improvements like Chain-of-Thought [4] have
enhanced model reasoning capabilities. Combined with larger,
higher-quality training datasets, these advances produced AI
systems with remarkable performance across diverse domains.
For instance, OpenAI’s o3 model outperformed 99.8% of pro-
grammers on Codeforces [5], while AlphaGeometry2 achieved
gold-medal performance on International Math Olympiad ge-
ometry problems, solving 84% of problems from 2000-2024
and contributing to a silver-medal solution at IMO 2024 [6].1

Beyond so-called frontier models from OpenAI, Anthropic,
Meta, or Google, we now have open-source LLMs that can run
on consumer hardware - from desktop computers to laptops
and even phones - with capabilities exceeding the original
ChatGPT [7], [8]. These models are being rapidly integrated
into software development workflows, both as interactive
programming assistants, and as embedded components within
larger systems.

1Note that it is difficult to know to what extent the problems in benchmark
sets are out-of-distribution. For example, IMO problems might be based on
classical theorems occurring in textbooks on which o3 was trained.

LLMs are transforming software development by making
the raw production of code fast and cheap. Platforms like
GitHub Copilot [9], Cursor [10], and Continue [11] allow
developers to delegate programming tasks to AI assistants
working in parallel. This has led to “vibes coding” —-
a paradigm where developers primarily interact with their
code through an AI intermediary, requesting modifications
prosaically and then accepting them into the codebase with
minimal review [12]. While largely acceptable for personal
projects, this style of coding is increasingly becoming the
norm in professional settings, where the pressure for engi-
neering velocity exceeds the pressure to write good code.
Notably, vibes coding represents a logical departure from
traditional code synthesis, which began with Church’s work in
1963 [13], because the synthesis problem starts with a formal
specification for what the code is intended to do, and only ends
when the code can be guaranteed to satisfy the spec, whereas
vibes coding begins with an informal specification and ends
when the code is saved to the file (regardless of correctness).

As AI seeps into consumer products, developer workflows,
and more, the associated risks grow in both complexity and
magnitude. Broadly speaking, there are three fields of research
which try to address these risks: AI Ethics, which studies
ethical implications of AI systems such as social harms
caused by AI-enabled advertising; AI Safety, which studies the
acceleration of AI capabilities and the risk those capabilities
pose to long-term human survival; and AI Security, which
studies the security of AI systems both intrinsically and in
composition with other software. In this work we focus on AI
Security, although the risks we discuss have implications for
the two former camps as well.

We classify security risks as being accidental, malicious, or
what we call architectural. Accidental risks are risks caused
by AI systems that make mistakes. For example, Dou et.
al. [14] find that both open and closed-source LLMs make
certain categories of mistakes when asked to generate code,
which, they hypothesize, relate to both the data the LLMs
are trained on (including flawed code written by humans) and
skews between the distribution of real-world code and the
distribution of problems found in LLM benchmarks. Malicious
issues can arise when LLMs are modified to favor deleterious
outputs, for example, calls to violence or the proliferation of
political propaganda, or in the case of code-generation, code
with subtle vulnerabilities or backdoors. Such issues can arise
through many vectors, including jail-breaking or data poison-



ing (see [15] for more). Finally, it is generally useful to think of
an AI system as having “goals” (similar to how a heat-seeking
missile has goals) that are implicit in its architecture, training
data, and training methodology, and these goals may diverge
significantly from security considerations [16]. We describe
these goal mismatches as architectural issues. While some
research, such as mechanistic interpretability work (e.g. [17]),
attempts to shed light on the goals of AI systems, at present
it is generally fair to characterize these goals as being both
unknowable and unmodifiable.

The primary mitigation strategies for AI risks are alignment
(get the system to understand what you want and make
decisions as your proxy), review (make sure the human
understands and approves all AI outputs), and what we call a
“formalization-based” paradigm (specify objective properties
you want the output to have, and then check them). For
the most part, AI research labs developing LLMs expect the
complexity of AI-generated solutions to grow exponentially,
making review infeasible. Moreover, it is not clear they are
implementing robust strategies to achieve alignment on the
relevant timescales. Many users of AI systems expect to review
AI outputs, but real-world pressures and the growth of AI
capabilities make this seem unlikely in commercial environ-
ments. Meanwhile, AI systems are increasingly utilizing two
critical features (structured outputs and tools) which happen
to be highly amenable to formalization-based approaches. As
a result, we argue that the security of contemporary LLM-
based AI systems is, inherently, a language-theoretic problem,
where the goals of the system should be formalized and the
formalization should be checked over the generated text.

The rest of this paper is organized as follows. We explain
structured outputs and tool-use, and the language-theoretic
challenges of securing each capability, in Sec. II. Then in
Sec. III we give some anecdotal reports of prevailing attitudes
about structured outputs, tool-use, and AI security in the San
Francisco startup community, leveraging a limited survey of
startup founders. This is meant to help an academic audience
understand what is happening inside of startups today, and
where the industry may be headed as AI systems become more
capable and prevalent. Unfortunately, our sample size is very
small and should be viewed as anecdotal at best. We survey
prior works on the language-theoretic security of AI systems
in Sec. IV, and discuss future research directions in Sec. V.
We conclude in Sec. VI.

II. CHALLENGES

As developers incorporate AI into their applications, they
naturally hit two roadblocks. First, LLMs produce inconsistent
outputs, in contrast to standard RESTful services that can
follow predefined APIs with structured, parsable responses.
The natural solution is to induce the LLM to produce a
structured output, or, massage its unstructured output(s) into
some fixed shape post-generation. Second, LLMs lack the
ability to do things in the real world, such as look up facts in
a database, execute code, or receive and send emails, severely
limiting their real-world use-cases. This is solved through

tool use, where the LLM can invoke a known tool using a
special code; the tool is then executed server-side and a stateful
response is fed to the LLM before it takes another step. To
get a sense of how popular structured outputs and tool-use
are in the wild, we asked Maitai2, a service that hosts, fine-
tunes, routes, and corrects LLMs, to analyze their customer
traffic for both. Their data shows that approximately 21.2%
of requests involve structured outputs and 32.7% involve tool
calls, with minimal overlap between these categories. Both
structured outputs and tool use present difficult language-
theoretic security challenges, as we explain below.

A. Structured Outputs

The first LLM products were text-to-text models that
mapped a prose prompt to an equally unstructured response
(e.g., “What is the meaning of life?” 7→ “The pursuit of happi-
ness.”). But developers building products with LLMs wanted
structured outputs, i.e., JSON or XML payloads with specific
shapes that could be reliably deserialized into predefined data
structures [18] (see also §3.1 of [19]). Responding to this need,
researchers built a variety of tools to both prompt LLMs to
produce structured outputs (e.g. [20], [21], [22]) and verify
that these outputs type-check (e.g. [23], [24], see also [25]).3

The proliferation of structured outputs goes hand-in-hand
with the proliferation of parsers for these outputs. These
parsers are typically developed incrementally and in response
to organic developer demand, without particular attention to
how new features impact the language-theoretic complexity
of the parser or its security. Structured output parsing is
conventionally done in the same place as the primary ap-
plication logic, without any special sandboxing or isolation.
Thus, a savvy attacker could potentially breach an applica-
tion by feeding it inputs crafted to induce deleterious LLM
outputs which, in turn, exploit parser vulnerabilities server-
side. The LangSec challenge is, therefore, to build secure,
reliable parsers for LLM-generated structured outputs that
can be safely run in an unisolated, real-time environment.
These parsers are fundamentally different from traditional ones
because they cannot assume anything about the LLM outputs
they are fed, and moreover, if an LLM output fails to parse,
the parser should output a clear error message that can be used
to re-prompt the LLM for a (repaired) output.

B. Tool Use

Tool use, or function calling, refers to frameworks by which
an AI is made aware of, and given the capability to query, one
or more pre-existing tools [27]. Examples include querying a
database [28], [29] or table [30], hitting an API [31], executing
LLM-generated code [32], [33], or even moving a robot [34].
The LLM invokes the tool by outputting a special (textual)
command, as illustrated in Fig. 1.

The problem with tool use is that typically the tool in
question is executed on the server that hosts the rest of the
application logic. The tool use capabilities of the popular LLM

2https://trymaitai.ai/
3For a brief history of these efforts, see [26].

2

https://trymaitai.ai/


{
"role": "assistant",
"content": [{

"type": "text",
"text": "<thinking>Check weather and

rain forecast for SF</thinking>"
}, {

"type": "tool_use",
"id": "tool_wx_01",
"name": "get_weather",
"input": {

"location": "San Francisco, CA",
"include_forecast": true

}
}]

}

Fig. 1: Tool use invocation where an LLM requests weather
information [35].

APIs are not built with any kind of default isolation, nor
does the corresponding documentation suggest it. The LangSec
challenge is, therefore, to build a safety system around tool use
that can enforce policies like, “the database_query never
deletes data from the database” or “the get_weather tool
invokes no more than 100 queries per second.”

C. Language-Theoretic Implications

The core idea of LangSec is that hackers will stitch together
unintended bits of computation (“attacker-defined abstrac-
tions” [36]) – such as side-effects from bugs, over-privileged
APIs, hardware defects, etc. – to form programming languages
with which they can program malicious logic. In particular,
this frequently occurs in parsers, because parsing is “hard” in
the sense that a sufficiently advanced parser will likely become
a “weird machine” programmable by the data it is meant to
interpret. As the type systems of structured output frameworks
become increasingly complex, so too will the (currently mostly
ad-hoc) parsers that parse them, leading to the inevitable
rediscovery of all the security pitfalls the LangSec community
has spent over a decade analyzing in traditional parsers and
compilers. Hackers will find ways, such as prompt injection
or data poisoning, to induce LLMs into producing malformed
objects that exploit vulnerabilities in the parsers they are fed
to. For example, suppose an OS vendor allows users to submit
textual descriptions of custom boot images, with the most
popular submissions (upon a vote) being automatically fed
to an image generation model and the final images being
distributed to all users. An attacker might then attempt prompt
injection techniques to exploit a LogoFail vulnerability [37] in
the image parser. In an ideal world, inputs and outputs of the
AI systems would be parsed rigorously enough to protect even
an insecure UEFI in this scenario.

Meanwhile, tool use gives AI systems direct access to the
same tools that hackers have spent decades exploiting, and all
those pre-existing exploits will still work in this brave new
context, with the caveat that now the attacker must take the
additional step of figuring out how to coerce the LLM into

outputting a sufficiently evil sequence of tool invocations.4

We give examples of potential tool use exploits in Table I.

Tool Example Exploit
Database Query SQL injection
Code Sandbox Sandbox escape to remote code execution
Email Phishing Campaigns
Web Use DDoS through excessive agent use

TABLE I: Examples of theoretical tool use exploits.

Clearly both problems – safely parsing structured outputs,
and enforcing safety policies over tool invocations – fall
squarely within the purview of LangSec research.

III. PREVAILING ATTITUDES

To understand emerging industry attitudes about AI de-
ployment, we conducted a limited anonymous survey of five
founders from AI startups backed by the venture capital firm
and incubator Y Combinator.5 The survey was conducted
through Bookface, Y Combinator’s private social network.6

While the small sample size makes these results anecdotal,
they provide some insight into how venture-backed startups
approach AI integration. We enumerate results in Table II.

Practice or Belief Prevalence
Uses AI-enabled IDE 100% (5/5)
Employs human code review 80% (4/5)
Uses AI code review tools 40% (2/5)
Uses AI testing tools 20% (1/5)
Allows autonomous production changes 0% (0/5)
Uses structured outputs/DSLs 80% (4/5)
Developed custom parser 20% (1/5)
Allows AI resource allocation 20% (1/5)
Believes AI limitations persist by 2030 60% (3/5)
Expresses security concerns 80% (4/5)

TABLE II: Survey Results from YC Startup Founders (n=5)

Our survey shows widespread adoption of AI development
tools, with all respondents using AI-enabled IDEs and 20%
deploying code without human review. While 80% utilize AI
with structured outputs, most rely on established parsing tools
rather than custom solutions. No companies allow autonomous
production changes, and only 20% permit AI resource al-
location decisions with human oversight. Security concerns
were common (80% of respondents), and most founders (60%)
believe AI will still have significant limitations by 2030,
particularly around fully autonomous problem-solving.

While our survey respondents generally demonstrated cau-
tion in AI deployment, we observed more concerning prac-
tices in broader industry discussions. One startup founder
(outside our survey) described using an automated system in
which LLMs modify code in response to runtime exceptions,
with changes merged automatically into production upon a
successful test against whatever input caused the exception.

4For a nice talk on red-teaming LLMs the reader is referred to [38].
5Y Combinator has funded companies in excess of 600B USD in value,

such as Stripe, AirBnB, Instacart, DoorDash, Reddit, Coinbase, and Scale AI.
6The first author is the CTO of a Y Combinator backed startup and thus

has access to the platform.

3



Anecdotal conversations with a CEO of a major AI labora-
tory further suggest that some organizations are significantly
reducing hiring based on the belief that AI agents can now
fully automate most software engineering. These observations
underscore the urgency of improving AI security, as certain
well-funded organizations are already progressing toward fully
autonomous engineering.

IV. PRIOR WORKS

The only prior work we are aware of which analyzed
LLMs from a LangSec perspective is by Lintilhac, Ackerman,
and Cybenko, who built TEAIS, a framework for evaluating
the performance of LLMs, based on property-based testing
and mutation fuzzing [39]. They did not study tool-use
or structured outputs.7 Outside of academia, the LANGSEC
project [40] implements a policy-based safety system enabling
secure AI interactions with SQL databases. (To the best of
our knowledge, the authors are unfamiliar with LangSec as a
field and the name is coincidental.) On the other hand, some
prior works used LLMs as fuzzers to find language-theoretic
vulnerabilities in other systems [41], [42]. This is a nascent
research topic and, although LangSec adjacent, not typically
conducted or written from an explicitly LangSec perspective.

V. DISCUSSION

So far, we have outlined what software engineers are doing
today with AI, why these engineering practices carry clear
security risks, and why those security risks fall squarely
within the research camp of LangSec. These risks are not
just theoretical; they are immediate. For example, Karliner’s
Rules File Backdoor [43] uses hidden unicode characters in
Model Context Protocol configuration files to trick AI systems
into generating malicious code. This is a classic example
of a language-theoretic vulnerability, where the human’s in-
terpretation of the language is different from the machine’s
interpretation (see [44]). Another example is the Prompt-to-
SQL attack category [45] in which an attacker uses prompt
injection techniques to peform SQL injection against an AI
system with tool use over a database. In this case, the tool-
use invocation simply executes the raw SQL output by the
AI system, rather than forcing it to conform to some specific,
safe, predefined sublanguage first.

Next, we outline some existing research directions the
LangSec community could build upon to address said risks.

Type Contracts. Many structured output frameworks, such
as OpenAI’s JSON mode [20], do not actually guarantee that
the produced outputs adhere to the specified structure. For
example, suppose we want to generate a JSON object with
a specific schema, say, {"name": "string", "age":
"int"}. A typical approach is to prompt an LLM to return
an object matching the desired schema, and nothing else,
and then to try/catch a JSON.parse call around the
returned string and coerce the result to the desired type.
Depending on the semantics, an invalid string may lead to

7We believe that fuzzing LLMs to violate the constraints of their structured
output type contracts is a low-hanging fruit for follow-on research.

the catch branch, to an undefined object, or to an
object matching the schema but with undefined values
(e.g., "name": undefined). Strict type-checking naturally
reduces the surface of both parser bugs and attacks which
exploit those bugs, improving software reliability and security.
BAML [24] addresses this need with a strict type system built
in Rust, and they are working on a system for dependent types.
Approaching the same problem from the opposite direction,
Willard and Louf pioneered a technique whereby the LLM
drives a pushdown automata to produce words within its lan-
guage [46]. These ideas could be extended; the type contracts
for structured outputs could include arbitrary predicates (such
as the :output-contracts in ACL2 [47]), and the idea
of using an LLM in conjunction with a formal language could
be extended up the Chomsky hierarchy.

Formal Verification and Self-Certification. An emerging
body of research focuses on using LLMs to steer interac-
tive theorem provers in order to automatically prove math-
ematical theorems (see e.g. [48], [49], [50], [51]). Possi-
bly AI systems could be similarly utilized to “prove” their
own safety/correctness. This would reunite LLM-based code-
generation with classical program synthesis, where the task is
only considered complete when the generated code is proven
correct. Recently, Mehta and Dougherty built a benchmark to
test the capability of AI systems to prove the correctness of
generated code [52]. However, at the time of writing, whether
AI systems can consistently prove nontrivial theorems about
software remains an open question.

Sandboxing. If policy enforcement is too hard, another
option is to isolate the tool-use in a sandbox. For example, a
SQL Database tool could be isolated to a sandbox containing
an ephemeral copy of the database being queried; or code exe-
cution could be isolated in an offline AWS Lambda Function.

VI. CONCLUSION

Large language models have a myriad of faults. They are
nondeterministic, produce unexpected outputs, can be slow
and expensive, and are typically hosted on platforms that
experience fluctuating demand and, as a result, fluctuating
network reliability. But the biggest problem with LLMs is
how unreasonably effective they are at a wide array of
problems for which other computational approaches utterly
fail. Because LLM-based AI systems perform so well across
a wide swath of problem types – from math Olympiad to
competitive programming to customer service – developers are
rapidly integrating them into pre-existing software systems.
This integration outpaces the requisite, corresponding security
work. In this paper, we argued that securing AI systems is a
uniquely LangSec problem, particularly because of structured
outputs and tool-use. We gave anecdotes from the “front lines”
of venture-backed software development to motivate why this
problem matters, and outlined three concrete research areas the
LangSec community could investigate to improve the situation.
We believe the next RowHammer-caliber vulnerability will be
in an AI system; and we hope the LangSec community can
prove us wrong.

4



ACKNOWLEDGMENT

We would like to thank Juan Castaño for useful feedback
and Jacob Denbeaux for insightful conversations leading up
to this manuscript.

REFERENCES

[1] Arthur L Samuel. Some studies in machine learning using the game
of checkers. IBM Journal of research and development, 3(3):210–229,
1959.

[2] Introducing ChatGPT. https://openai.com/index/chatgpt/, 2022. Ac-
cessed 2/10/25.

[3] Jaime Sevilla and Edu Roldán. Training compute of frontier ai models
grows by 4–5x per year. Epoch AI, May, 28, 2024.

[4] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia,
Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in neural infor-
mation processing systems, 35:24824–24837, 2022.

[5] Openai o3 and o3-mini—12 days of openai: Day 12. https://www.
youtube.com/watch?v=SKBG1sqdyIU, 12 2024. Accessed 2/10/25.

[6] Yuri Chervonyi, Trieu H Trinh, Miroslav Olšák, Xiaomeng Yang, Hoang
Nguyen, Marcelo Menegali, Junehyuk Jung, Vikas Verma, Quoc V Le,
and Thang Luong. Gold-medalist performance in solving olympiad
geometry with alphageometry2. arXiv preprint arXiv:2502.03544, 2025.

[7] Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and
Yang Liu. Openchat: Advancing open-source language models with
mixed-quality data. arXiv preprint arXiv:2309.11235, 2023.

[8] AQ Jiang, A Sablayrolles, A Mensch, C Bamford, DS Chaplot, D de las
Casas, F Bressand, G Lengyel, G Lample, L Saulnier, et al. Mistral 7b
(2023). arXiv preprint arXiv:2310.06825, 2023.

[9] Copilot. https://copilot.microsoft.com/, 2025. Accessed 2/10/25.
[10] Cursor. https://www.cursor.com/, 2025. Accessed 2/10/25.
[11] Continue dev. https://www.continue.dev/, 2025. Accessed 2/10/25.
[12] Andrej Karpathy. Tweet about “vibes coding”. https://x.com/karpathy/

status/1886192184808149383, 2 2025. Posted 12:17 AM Feb 3, 2025.
Accessed Feb 10, 2025.

[13] Joyce Friedman. Alonzo church. application of recursive arithmetic
to the problem of circuit synthesissummaries of talks presented at
the summer institute for symbolic logic cornell university, 1957, 2nd
edn., communications research division, institute for defense analyses,
princeton, nj, 1960, pp. 3–50. 3a-45a. The Journal of Symbolic Logic,
28(4):289–290, 1963.

[14] Shihan Dou, Haoxiang Jia, Shenxi Wu, Huiyuan Zheng, Weikang Zhou,
Muling Wu, Mingxu Chai, Jessica Fan, Caishuang Huang, Yunbo Tao,
et al. What’s wrong with your code generated by large language models?
an extensive study. arXiv preprint arXiv:2407.06153, 2024.

[15] ATLAS matrix. https://atlas.mitre.org/matrices/ATLAS, 2024. Accessed
2/10/25.

[16] Ryan Greenblatt, Carson Denison, Benjamin Wright, Fabien Roger,
Monte MacDiarmid, Sam Marks, Johannes Treutlein, Tim Belonax, Jack
Chen, David Duvenaud, et al. Alignment faking in large language
models. arXiv preprint arXiv:2412.14093, 2024.

[17] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton
Bricken, Brian Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen,
Andy Jones, Hoagy Cunningham, Nicholas L Turner, Callum Mc-
Dougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah,
and Tom Henighan. Scaling monosemanticity: Extracting interpretable
features from claude 3 sonnet. Transformer Circuits Thread, 2024.

[18] Michael Xieyang Liu, Frederick Liu, Alexander J Fiannaca, Terry Koo,
Lucas Dixon, Michael Terry, and Carrie J Cai. ”we need structured
output”: Towards user-centered constraints on large language model
output. In Extended Abstracts of the CHI Conference on Human Factors
in Computing Systems, pages 1–9, 2024.

[19] Yu Liu, Duantengchuan Li, Kaili Wang, Zhuoran Xiong, Fobo Shi,
Jian Wang, Bing Li, and Bo Hang. Are llms good at structured
outputs? a benchmark for evaluating structured output capabilities in
llms. Information Processing & Management, 61(5):103809, 2024.

[20] https://platform.openai.com/docs/guides/structured-outputs?api-mode=
responses#json-mode, 2024. Accessed 2/10/25.

[21] Rahul Sengottuvelu. https://github.com/1rgs/jsonformer, 2023. Accessed
2/10/25.

[22] Ian Hoegen. https://docs.trymaitai.ai/sdk/structured output, 2024. Ac-
cessed 2/10/25.

[23] https://python.langchain.com/docs/how to/structured output/, 2025. Ac-
cessed 2/10/25.

[24] https://docs.boundaryml.com/home/welcome, 2024. Accessed 2/10/25.
[25] structured-logprobs. https://arena-ai.github.io/structured-logprobs/,

2025. Accessed 2/10/25.
[26] Nguyen Dat. History of structured outputs for

llms. https://memo.d.foundation/playground/01 literature/
history-of-structured-output-for-llms/, 2024. Accessed 2/10/25;
last updated 2025.

[27] Aaron Parisi, Yao Zhao, and Noah Fiedel. TALM: Tool augmented
language models. arXiv preprint arXiv:2205.12255, 2022.

[28] Xuanhe Zhou, Guoliang Li, and Zhiyuan Liu. Llm as dba. arXiv preprint
arXiv:2308.05481, 2023.

[29] Eduardo R Nascimento, Yenier T Izquierdo, Grettel M Garcıa, Gus-
tavo MC Coelho, Lucas Feijó, Melissa Lemos, Luiz AP Paes Leme,
and Marco A Casanova. My database user is a large language model.
In 26th Int. Conf. on Enterprise Info. Sys, 2024.

[30] Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin
Li. Large language models are versatile decomposers: Decompose
evidence and questions for table-based reasoning. arXiv preprint
arXiv:2301.13808, 2023.

[31] Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang.
Toolqa: A dataset for llm question answering with external tools.
Advances in Neural Information Processing Systems, 36:50117–50143,
2023.

[32] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Pro-
gram of thoughts prompting: Disentangling computation from reasoning
for numerical reasoning tasks. arXiv preprint arXiv:2211.12588, 2022.

[33] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming
Yang, Jamie Callan, and Graham Neubig. Pal: Program-aided language
models. In International Conference on Machine Learning, pages
10764–10799. PMLR, 2023.

[34] Shreyas Sundara Raman, Vanya Cohen, Ifrah Idrees, Eric Rosen, Ray-
mond Mooney, Stefanie Tellex, and David Paulius. Cape: Corrective
actions from precondition errors using large language models. In 2024
IEEE International Conference on Robotics and Automation (ICRA),
pages 14070–14077. IEEE, 2024.

[35] Tool use (function calling). 2025. Accessed 2/10/25.
[36] Erik Johannes Cornelius Bosman. Attacker-defined abstractions: Pro-

gramming benign system functionality for malicious purposes. 2024.
[37] Fabio Pagani, Alex Matrosov, Yegor Vasilenko, Alex Ermolov, Sam

Thomas, and Anton Ivanov. Logofail: Security implications of image
parsing during system boot. https://i.blackhat.com/EU-23/Presentations/
EU-23-Pagani-LogoFAIL-Security-Implications-of-Image REV2.pdf,
2023. Accessed 4/18/25.

[38] Hacking genai with llm red teaming and beyond. https://www.youtube.
com/watch?v=i2KJZ8J5kMA, 1 2025. Accessed 2/10/25.

[39] Paul Lintilhac, Joshua Ackerman, and George Cybenko. Testing and
evaluating artificial intelligence applications. In 2024 IEEE Security
and Privacy Workshops (SPW), pages 231–238. IEEE, 2024.

[40] Amit Schendel. LangSec: A security framework for text-to-SQL. https:
//github.com/langsec-ai/langsec.

[41] Joshua Ackerman and George Cybenko. Large language models for
fuzzing parsers (registered report). In Proceedings of the 2nd Interna-
tional Fuzzing Workshop, pages 31–38, 2023.

[42] Yu Jiang, Jie Liang, Fuchen Ma, Yuanliang Chen, Chijin Zhou, Yuheng
Shen, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Shanshan Li, et al.
When fuzzing meets llms: Challenges and opportunities. In Companion
Proceedings of the 32nd ACM International Conference on the Founda-
tions of Software Engineering, pages 492–496, 2024.

[43] Ziv Karliner. New vulnerability in github copilot and cursor: How
hackers can weaponize code agents. https://www.pillar.security/blog/
new-vulnerability-in-github-copilot-and-cursor-how-hackers-can-weaponize-code-agents,
March 2025. Accessed 4/18/25.

[44] Falcon Momot, Sergey Bratus, Sven M Hallberg, and Meredith L
Patterson. The seven turrets of babel: A taxonomy of langsec errors
and how to expunge them. In 2016 IEEE Cybersecurity Development
(SecDev), pages 45–52. IEEE, 2016.

[45] Rodrigo Pedro, Daniel Castro, Paulo Carreira, and Nuno Santos. From
prompt injections to sql injection attacks: How protected is your llm-
integrated web application? arXiv preprint arXiv:2308.01990, 2023.

5

https://openai.com/index/chatgpt/
https://www.youtube.com/watch?v=SKBG1sqdyIU
https://www.youtube.com/watch?v=SKBG1sqdyIU
https://copilot.microsoft.com/
https://www.cursor.com/
https://www.continue.dev/
https://x.com/karpathy/status/1886192184808149383
https://x.com/karpathy/status/1886192184808149383
https://atlas.mitre.org/matrices/ATLAS
https://platform.openai.com/docs/guides/structured-outputs?api-mode=responses#json-mode
https://platform.openai.com/docs/guides/structured-outputs?api-mode=responses#json-mode
https://github.com/1rgs/jsonformer
https://docs.trymaitai.ai/sdk/structured_output
https://python.langchain.com/docs/how_to/structured_output/
https://docs.boundaryml.com/home/welcome
https://arena-ai.github.io/structured-logprobs/
https://memo.d.foundation/playground/01_literature/history-of-structured-output-for-llms/
https://memo.d.foundation/playground/01_literature/history-of-structured-output-for-llms/
https://i.blackhat.com/EU-23/Presentations/EU-23-Pagani-LogoFAIL-Security-Implications-of-Image_REV2.pdf
https://i.blackhat.com/EU-23/Presentations/EU-23-Pagani-LogoFAIL-Security-Implications-of-Image_REV2.pdf
https://www.youtube.com/watch?v=i2KJZ8J5kMA
https://www.youtube.com/watch?v=i2KJZ8J5kMA
https://github.com/langsec-ai/langsec
https://github.com/langsec-ai/langsec
https://www.pillar.security/blog/new-vulnerability-in-github-copilot-and-cursor-how-hackers-can-weaponize-code-agents
https://www.pillar.security/blog/new-vulnerability-in-github-copilot-and-cursor-how-hackers-can-weaponize-code-agents


[46] Brandon T Willard and Rémi Louf. Efficient guided generation for llms.
arXiv preprint arXiv:2307.09702, 2023.

[47] https://www.cs.utexas.edu/∼moore/acl2/v8-5/combined-manual/index.
html?topic=ACL2S DEFUNC. Accessed 2/10/25.

[48] Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu,
Mateja Jamnik, Timothée Lacroix, Yuhuai Wu, and Guillaume Lample.
Draft, sketch, and prove: Guiding formal theorem provers with informal
proofs. arXiv preprint arXiv:2210.12283, 2022.

[49] Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song,
Shixing Yu, Saad Godil, Ryan J Prenger, and Animashree Anandkumar.
Leandojo: Theorem proving with retrieval-augmented language models.
Advances in Neural Information Processing Systems, 36, 2024.

[50] Minghai Lu, Benjamin Delaware, and Tianyi Zhang. Proof automation
with large language models. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, pages
1509–1520, 2024.

[51] Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large
language models as copilots for theorem proving in lean. arXiv preprint
arXiv:2404.12534, 2024.

[52] Q. Dougherty R. Mehta. Proving the coding interview: A benchmark for
formally verified code generation. In The Second International Workshop
on Large Language Models for Code, 2025.

6

https://www.cs.utexas.edu/~moore/acl2/v8-5/combined-manual/index.html?topic=ACL2S____DEFUNC
https://www.cs.utexas.edu/~moore/acl2/v8-5/combined-manual/index.html?topic=ACL2S____DEFUNC

	Introduction
	Challenges
	Structured Outputs
	Tool Use
	Language-Theoretic Implications

	Prevailing Attitudes
	Prior Works
	Discussion
	Conclusion
	References

