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Our Goal: replace existing parsers with 
trustworthy ones
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Challenge 1: Get a trustworthy parser
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Layer 1: EverParse
Generating verified parsers from data format specifications

T. Ramananandro et al. EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formats. 
USENIX Security 2019
N. Swamy et al. Hardening Attack Surfaces with Formally Proven Binary Format Parsers. PLDI 2022

https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://doi.org/10.1145/3519939.3523708
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6K lines of 3D spec → 30K lines of C code
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With a formal spec language, fewer possibilities 
to make mistakes in spec
• No undefined behaviors, no unhandled cases, 

etc.

But:

Writing a specification is non-trivial

• Reading docs & code, writing tests, aiming for 
security while also minimizing regressions

• Approx:  1 person·year for Hyper-V
network virtualization

• 3D spec language learning curve

• Can we do better? With AI?
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Challenge 2: Automating spec writing
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Layer 2: 3DGen
AI-Assisted Generation of Data Format Specifications

S. Fakhoury et al. 3DGen: AI-Assisted Generation
of Provably Correct Binary Format Parsers.
ICSE 2025

https://arxiv.org/abs/2404.10362
https://arxiv.org/abs/2404.10362
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✓ Workflow constrains what AI Agents can 

produce

✓ Provides memory safety guarantees for 

free with 3D

✓ Output backed by symbolic tools 

• Compilers, test generators, proof 

checkers

✓ Tools provide useful + concrete feedback, 

both for humans & Agents
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• Three Agent personas collaborating:
o Planner: dictates roles, orchestrates 

conversation
o Domain Expert Agent: Extracts 

constraints from NL or Code, provides 
feedback about generated specification

o 3D Agent: Extracts 3D specifications

• Implemented with AutoGen [3]
o Composable 

Retrieval Augmented (RAG) agents

• No fine-tuning, easy migration to GPT-X!
o Gpt-4-32k model

Agent Implementation

[3] Wu, Qingyun, et al. "AutoGen: Enabling next-gen LLM applications via multi-agent conversation framework." arXiv preprint arXiv:2308.08155 (2023)



3DGen Results on 20 Network Protocol RFCs
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Manual specification review

+ Easier to analyze abstraction (spec)
+ Additional guarantees 
+ Augmented test suites
- Still reviewing specifications
- Loss of trust assumed in the writing process

Validation Effort

Applying formal methods tools at scale

Constraining AI Output and Lowering Barrier of Use



Reviewing Specifications
- Ground truth cannot be inferred from an imperfect/incomplete system or documentation

- Users must remain in the loop to review specification correctness

- Specifications of many forms, with varying levels of expertise needed:
- DSL abstraction (3D Format spec) 
- I/O Tests, Pre/post conditions, Loop invariants

- How do we surface specifications in easy-to-review forms?
- What part of the spec is a (differential)  binary input test exercising? 
- Do we augment specification with NL explanations ?

General workflow
-  How do we ensure systematic coverage of NL specification documents?  
- Integrating DSL use in multi-agent systems: how do we facilitate interop of DSLs?

Applying formal methods tools at scale

Constraining AI Output and Lowering Barrier of Use



Symbolic tools

• Test generators

• Compilers

• Proof checkers

Existing PL/FM tools can solve (part of) the trust problem 

• Restrict code generation space to provide domain-specific guarantees 
• AI agents can be easily taught to code in restrictive DSLs that provide 

users with: safety & correctness, optimizations, etc.
• Reduce validation burden on the user compared to unconstrained AI use 

alone
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Mixed User Input

Formal 

spec

Existing 

code

Natural 
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Formal Specifications

Generalization:

Effectively Analyzable

Symbolic Languages

An all-of-the-above methodology

for trustworthy AI programming

• AI + Testing + Verification

EASLs succinctly capture complex user intent and 

computational behaviors

AIs target EASLs from mixed user input

Symbolic tools check EASL code

• provide feedback

• emit provably correct code

Formal SpecificationsEASL

Symbolic tools

• Test generators

• Compilers

• Proof checkers Provably correct 

programs
Error reports

Disambiguating 

tests
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Layer 2: 3DGen
AI-Assisted Generation of Data Format Specifications

✓✓
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Challenge 3: Automating integration
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Existing codebases => 
isolate  legacy parser



Layer 3: AutoParse
Automatic Refactoring and Integration (Work in progress)
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ELT layout

Secure Parsing at MSR RiSE

 3D, Hyper-V [PLDI 2022, MSR Blog 2021]

 3DGen [ICSE 2025]

 AutoParse

 Support for Architecture-Dependent Pointer-Rich Data Structures

 TLS 1.3 [USENIX Security 2019]

 QUIC [S&P 2021]

 ASN.1 DER [CPP 2023]

 CBOR, CDDL, COSE [2025]

 Beyond EverParse: RE#, efficient regex parsing with derivatives [POPL 2025]

 …

For more info: taramana@microsoft.com 

https://dl.acm.org/doi/10.1145/3519939.3523708
https://www.microsoft.com/en-us/research/blog/everparse-hardening-critical-attack-surfaces-with-formally-proven-message-parsers/
https://arxiv.org/abs/2404.10362
https://www.microsoft.com/en-us/research/publication/everparse/
https://doi.org/10.1109/SP40001.2021.00039
https://dl.acm.org/doi/abs/10.1145/3573105.3575684
https://arxiv.org/abs/2505.17335
https://dl.acm.org/doi/10.1145/3704837
mailto:taramana@microsoft.com
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