
From Legacy to Verified Parsers
with AI

Tahina Ramananandro
RiSE – Microsoft Research

In collaboration with:
Mingwei Zheng (Purdue University)

Sarah Fakhoury, Nikhil Swamy, Shuvendu Lahiri, Markus Kuppe
(RiSE – Microsoft Research)

Microsoft internal product teams

Human Experts

Build domain
expertise

Write a
trustworthy
parser

Existing codebases

Integrate

Our Goal: replace existing parsers with
trustworthy ones

Human Experts

Build domain
expertise

Write a
trustworthy
parser

Existing codebases

Manually integrate

Challenge 1: Get a trustworthy parser

Human Experts

Format Spec

Build domain
expertise

Manually write
a specification

Compile into a
verified high-
performance C
parser

Existing codebases

Manually integrate

Layer 1: EverParse
Generating verified parsers from data format specifications

T. Ramananandro et al. EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formats.
USENIX Security 2019
N. Swamy et al. Hardening Attack Surfaces with Formally Proven Binary Format Parsers. PLDI 2022

https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://doi.org/10.1145/3519939.3523708

Layer 1: EverParse

External source of
truth (RFC, etc.)

Format.3d Format.fst

EverParse Libs

Theorems
Memory safe

Arithmetically safe
Functionally correct
Double-fetch free

…

F* code and proofs

Format.c

C/C++ application

1. Author spec 2. Proof-checking & codegen 3. Integrate

Handwritten
parser

Automatically
translate

Auto. verify
& code gen

Distill

In Windows and
Azure since 2019

Now in Windows 10, 11, and Azure Cloud: Every network packet

passing through Hyper-V is validated by EverParse formally verified code

6K lines of 3D spec → 30K lines of C code

Layer 1: EverParse

External source of
truth (RFC, etc.)

Format.3d Format.fst

EverParse Libs

Theorems
Memory safe

Arithmetically safe
Functionally correct
Double-fetch free

…

F* code and proofs

Format.c

C/C++ application

1. Author spec 2. Proof-checking & codegen 3. Integrate

Handwritten
parser

Automatically
translate

Auto. verify
& code gen

Distill

In Windows and
Azure since 2019

Now in Windows 10, 11, and Azure Cloud: Every network packet

passing through Hyper-V is validated by EverParse formally verified code

6K lines of 3D spec → 30K lines of C code

With a formal spec language, fewer possibilities
to make mistakes in spec
• No undefined behaviors, no unhandled cases,

etc.

But:

Writing a specification is non-trivial

• Reading docs & code, writing tests, aiming for
security while also minimizing regressions

• Approx: 1 person·year for Hyper-V
network virtualization

• 3D spec language learning curve

• Can we do better? With AI?

Human Experts

Format Spec

Build domain
expertise

Manually write
a specification

Compile into a
verified high-
performance C
parser

Existing codebases

Manually integrate

Layer 1: EverParse
Generating verified parsers from data format specifications

✓

Human Experts

Format Spec

Build domain
expertise

Manually write
a specification

Compile into a
verified high-
performance C
parser

Existing codebases

Manually integrate

Manual Step

Challenge 2: Automating spec writing

Microsoft Research

Layer 2: 3DGen
AI-Assisted Generation of Data Format Specifications

S. Fakhoury et al. 3DGen: AI-Assisted Generation
of Provably Correct Binary Format Parsers.
ICSE 2025

https://arxiv.org/abs/2404.10362
https://arxiv.org/abs/2404.10362

Code Base

Documentation

AI Agent

Parser Specification

Format.3d

Symbolic Test Generation

Compiled

Candidate

 Parser

3DTestGen

Test PacketsTest PacketsTest Packets

Compiler

Feedback

Compare

Labels

Unit test

feedback

Verified_Parser.c is

test equivalent to

legacy parser

Legacy

Parser

3DGen Workflow

✓ Workflow constrains what AI Agents can

produce

✓ Provides memory safety guarantees for

free with 3D

✓ Output backed by symbolic tools

• Compilers, test generators, proof

checkers

✓ Tools provide useful + concrete feedback,

both for humans & Agents

Microsoft Research

• Three Agent personas collaborating:
o Planner: dictates roles, orchestrates

conversation
o Domain Expert Agent: Extracts

constraints from NL or Code, provides
feedback about generated specification

o 3D Agent: Extracts 3D specifications

• Implemented with AutoGen [3]
o Composable

Retrieval Augmented (RAG) agents

• No fine-tuning, easy migration to GPT-X!
o Gpt-4-32k model

Agent Implementation

[3] Wu, Qingyun, et al. "AutoGen: Enabling next-gen LLM applications via multi-agent conversation framework." arXiv preprint arXiv:2308.08155 (2023)

3DGen Results on 20 Network Protocol RFCs

24

Symbolic tools

• Test generators

• Compilers

• Proof checkers

3DGen Agents

3D

Ambiguous User Intent

Code/Testing Context

Documentation

Error

Reports

Provably correct

Program

Differentiating

Tests

Manual specification review

+ Easier to analyze abstraction (spec)
+ Additional guarantees
+ Augmented test suites
- Still reviewing specifications
- Loss of trust assumed in the writing process

Validation Effort

Applying formal methods tools at scale

Constraining AI Output and Lowering Barrier of Use

Reviewing Specifications
- Ground truth cannot be inferred from an imperfect/incomplete system or documentation

- Users must remain in the loop to review specification correctness

- Specifications of many forms, with varying levels of expertise needed:
- DSL abstraction (3D Format spec)
- I/O Tests, Pre/post conditions, Loop invariants

- How do we surface specifications in easy-to-review forms?
- What part of the spec is a (differential) binary input test exercising?
- Do we augment specification with NL explanations ?

General workflow
- How do we ensure systematic coverage of NL specification documents?
- Integrating DSL use in multi-agent systems: how do we facilitate interop of DSLs?

Applying formal methods tools at scale

Constraining AI Output and Lowering Barrier of Use

Symbolic tools

• Test generators

• Compilers

• Proof checkers

Existing PL/FM tools can solve (part of) the trust problem

• Restrict code generation space to provide domain-specific guarantees
• AI agents can be easily taught to code in restrictive DSLs that provide

users with: safety & correctness, optimizations, etc.
• Reduce validation burden on the user compared to unconstrained AI use

alone

Agent / Copilot

DSL

Ambiguous User Intent

Code/Testing Context

Documentation

Error

Reports

Provably correct

Program

Differentiating

Tests

Mixed User Input

Formal

spec

Existing

code

Natural

Lang

Formal Specifications

Generalization:

Effectively Analyzable

Symbolic Languages

An all-of-the-above methodology

for trustworthy AI programming

• AI + Testing + Verification

EASLs succinctly capture complex user intent and

computational behaviors

AIs target EASLs from mixed user input

Symbolic tools check EASL code

• provide feedback

• emit provably correct code

Formal SpecificationsEASL

Symbolic tools

• Test generators

• Compilers

• Proof checkers Provably correct

programs
Error reports

Disambiguating

tests

Microsoft Research

Layer 2: 3DGen
AI-Assisted Generation of Data Format Specifications

✓✓

Existing codebases

Manually integrate

Manual Step

Challenge 3: Automating integration

Existing codebases

Manually integrate

Challenge 3: Automating integration

Manual Step

Manual Step

Existing codebases =>
isolate legacy parser

Layer 3: AutoParse
Automatic Refactoring and Integration (Work in progress)

Isolated
parsing

function

Processing
code

Step 1: Refactor => Create
Isolated parsing function

Step 2: Spec Inference and
Testing

Isolated
parsing

function

Format
Spec

Test
Feedback

Parser.c

Step 3: Replace Isolated
Parser with Verified Code

Parser.c

Isolated
parsing

function

Processing
code

Processing
code

Code Base

Extract

Context

AI

Agent

Syntax

feedback

End-to-end testing

Step 1: Refactor to create

isolated parsing function

Original

code base

Test

feedback

dispersed

parsing

logic

Isolated

Parser

Step 1

Code Base

Extract

Context

AI

Agent

Syntax

feedback

End-to-end testing

Refactored Code Base

Documentation

AI Agent

Parser Specification

Format.3d

Compiler

Feedback

Unit test

feedback

Step 1: Refactor to create

isolated parsing function
Step 2: Specification inference and testing

Original

code base

Refactored code base

with isolated parsing

function

Step 1

Step 2

Test

feedback

dispersed

parsing

logic

Isolated

Parser

Symbolic Test Generation

Compiled

Candidate

 Parser

3DTestGen

Test PacketsTest PacketsTest Packets

Compare

Labels

Unit test

feedback

Verified_Parser.c is

test equivalent to

isolated parser

Isolated

Parser

Code Base

Extract

Context

AI

Agent

Syntax

feedback

End-to-end testing

Refactored Code Base

Documentation

AI Agent

Parser Specification

Format.3d

Symbolic Test Generation

Compiled

Candidate

 Parser

3DTestGen

Test PacketsTest PacketsTest Packets

Compiler

Feedback

Compare

Labels

Unit test

feedback

Step 1: Refactor to create

isolated parsing function
Step 2: Specification inference and testing

Step 3: Replace isolated

parser with verified code

Original

code base

Refactored code base

with isolated parsing

function

Refactored code

base with

Verified_Parser.c

Step 1

Step 2

Step 3

Test

feedback

Verified_Parser.c is

test equivalent to

isolated parser

Isolated

Parser

dispersed

parsing

logic

Isolated

Parser

ELT layout

Secure Parsing at MSR RiSE

 3D, Hyper-V [PLDI 2022, MSR Blog 2021]

 3DGen [ICSE 2025]

 AutoParse

 Support for Architecture-Dependent Pointer-Rich Data Structures

 TLS 1.3 [USENIX Security 2019]

 QUIC [S&P 2021]

 ASN.1 DER [CPP 2023]

 CBOR, CDDL, COSE [2025]

 Beyond EverParse: RE#, efficient regex parsing with derivatives [POPL 2025]

 …

For more info: taramana@microsoft.com

https://dl.acm.org/doi/10.1145/3519939.3523708
https://www.microsoft.com/en-us/research/blog/everparse-hardening-critical-attack-surfaces-with-formally-proven-message-parsers/
https://arxiv.org/abs/2404.10362
https://www.microsoft.com/en-us/research/publication/everparse/
https://doi.org/10.1109/SP40001.2021.00039
https://dl.acm.org/doi/abs/10.1145/3573105.3575684
https://arxiv.org/abs/2505.17335
https://dl.acm.org/doi/10.1145/3704837
mailto:taramana@microsoft.com

	Slide 1: From Legacy to Verified Parsers with AI
	Slide 5
	Slide 7
	Slide 8
	Slide 11: Layer 1: EverParse
	Slide 14: Layer 1: EverParse
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 24: 3DGen Results on 20 Network Protocol RFCs
	Slide 25
	Slide 26
	Slide 27: Existing PL/FM tools can solve (part of) the trust problem
	Slide 28: Generalization: Effectively Analyzable Symbolic Languages
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Layer 3: AutoParse Automatic Refactoring and Integration (Work in progress)
	Slide 33
	Slide 35
	Slide 37
	Slide 39: Secure Parsing at MSR RiSE

