
The Art of Fault Injection:
Weird Machines all the way down

1

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

Building up.

2

Hardware

Security boundaries

Kernel
App

Userspace

AppApp

VM

HypervisorKernel
App

Userspace

AppApp

VM

Kernel
App

Userspace

AppApp

VM

TEE

“Microarchitecture”
2017:

Microarchitectural

attacks

4

Notes from Micro-architectural attacks [2017]

• Security models aren’t just a Software (SW) thing

• Most of the Hardware (HW) has no idea of security boundaries:

• unless factored in during design

• HW resources shared across security boundaries can be problematic

• It’s painful to recover

Hardware

Are we STILL missing something?

Kernel
App

Userspace

AppApp

VM

HypervisorKernel
App

Userspace

AppApp

VM

Kernel
App

Userspace

AppApp

VM

TEE

“Microarchitecture”

Physics

6

Walking on thin ice…

• The whole computing model assumes

that:

• the right logical values

• are correctly represented

• at the rising edge

• of each clock cycle.

• Everywhere

• That’s why we have constraints on

operating conditions (e.g.

temperature range)

Zussa et al –“Analysis of the fault injection mechanism related to negative and

positive power supply glitches using an on-chip voltmeter” - [ZDRC2014]

https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf

All the computing in the world relies upon…

7

Sampling the correct data

A few billions of times per second

Everywhere (in billions of gates)

Every time. Every single time.

What can go wrong?

8

9

Natural Phenomena

Ziegler, Lanford –“Effects of cosmic rays on computer memories”

(1979)

May, Woods –“Alpha-particle-induced soft errors in dynamic memories”

(1979)

https://www.science.org/doi/10.1126/science.206.4420.776
https://ieeexplore.ieee.org/document/1479948

Known (attack) techniques

3.3 V

Time

4.0 V

1.0 V

Clock

Time

Voltage

Clock

Temperature

Electro-magnetic field

Laser (“Nexus-6” kitten)

11

Most of them involve transfer of energy

Interestingly…

Fault Injection Reference Model (FIRM)

12

Hardware
Vulnerability

Inject
(Attack technique)

Activate Glitch
(Parameters)

Fault
(Fault Model)

Exploit Goal

Physics
manipulation

Digital Logic/Computational
effects

It’s all our fault(s)!

13

A fault propagation model

Fault

Physical

Circuit

Micro-Architecture

Software

“Hardware”

Logical gates,

Memory Cells, Flip Flops

Execution
Control Flow,

Data Flow

Instructions

R
o
o
t
C

a
us

e

see [2018]: Yuce, Schaumont, Witteman

Notes

• Geared towards faults in software execution:

• Not everything is instructions

• Attack against non-CPU subsystem do not easily fit:

• JTAG

• OTP

• RNGs

• …

• Example:

• Hardwear.io USA 2022 -"Breaking SoC Security by Glitching OTP Data Transfers" [Raelize]

15

https://raelize.com/upload/research/2022/hardwear_io_US2022_-_Breaking_SoC_Security_by_Glitching_OTP_Data_Transfers_v1.0.pdf

Let’s extend it

Fault

Physical

Circuit

Micro-Architecture

Software

“Hardware”

Logical gates,

Memory Cells, Flip Flops

Execution
Control Flow,

Data Flow

Instructions

R
o
o
t
C

a
us

e

SubsystemOTP, JTAG, CPU,…

Modeling faults.

17

The observer’s challenge

18

ALL the faults introduced in

a system

Faults that CAN be observed

Faults that ARE being observed

Faults useful for an attack

Notes

• Describing all the faults actually introduced in a system is possibly

infeasible:

• We need to observe them to identify them

• Still, it may be possible to formally describe fault models geared

toward specific attacks

19

Guess how FI affects code execution…

20

21

“It is as if…we skipped that instruction”

Instruction skipping

• The most common description of FI effects (fault model) on CPU

execution:

• Been with us for at least 3 decades ☺

• First attacks mostly targeted security relevant decisions

• Smart Card pin authentication

• Signature checks

• …

Typical attacks

• Targets:

• Conditionals:

• To “skip” the compare instruction

• Function calls:

• To “skip” the execution of a security relevant function

• Infinite loops:

• To “skip” the current instruction an fall into the next one

• This requires precise targeting of specific instructions:

• Strong timing requirements

• Potential targets are easy to predict

22

Example

23

Notes

• “Instruction skipping” models fault at the instruction execution level

• The original program continues to be executed

• We just take an unintended branch in a decision

• Hard to jump at arbitrary locations

24

Attack execution

• “Instruction skipping”

requires accurate timing

• Can be executed

blindly:

• i.e. no assumption on

type of fault

• “Glitch ‘n pray”

25

SW countermeasures: Multiple checks

• Attack assumption:

• A glitch is required for

every check

• One instruction, one

glitch

• Mitigation: Perform

multiple checks

26

SW countermeasures: Making synchronization harder

• Attack assumption:

• A glitch must “hit” that

instruction at a specific

point in time

• Mitigation:

• Random delays are

introduced around

critical checks

27

Observations

• SW-based countermeasures are widely used in the industry and academia

• Multiple checks and random delays are two prominent examples

• Additional countermeasures available

• Commonly advised and implemented in FI-resistant targets

• They reduce attack success rate:

• Multiple glitch required

• Attack timing more difficult

28

A few common beliefs

• “Software is vulnerable to FI”:

• Wrong. Hardware is.

• Source code reviews for fault injections are considered a proper tool

for spotting “FI vulnerabilities”:

• We will understand why that is not the case, shortly

29

Untold assumption

30

Instruction skipping is the relevant fault model

Is that true?

31

Test code: Counter (unrolled loop)

Add instruction: adds 1

Macros

Target code

1024 add instructions (Unrolled loop)

Trigger (GPIO26): Up

Trigger (GPIO26): Down

Data analysis (1)

Instruction skipping

Something weird…

How do we explain these results

with instruction skipping?

…and weirder…

What are the values in these responses?

36

A memory address? how?

Some hints

37

What could be happening?

Our instruction (+ encoding)

Opcode Op1 (t) Op2 (s) Immediate (r)

Occam’s razor

• Glitches are most likely corrupting instructions

• “Instruction corruption” explains all the responses we see

• Responses slightly above 0x400 → Immediate corruption

• Responses containing a memory address → Source register corruption

• Responses below 0x400 (i.e. “instruction skipping”)

• Instruction is mutated into one without side effects. E.g: addi.n a8, a8, 0

• Also all the exceptions can be explained!

Instruction skipping…does NOT exist

• Well, it MAY still exist…:

• But we have a better explanation now for it

• Instruction is likely corrupted to become a NOP-equivalent instruction:

• i.e. an instruction with no relevant side-effects

• Examples:

• orr r0, r0, r0

• add r0, r0, #0

• …

39

Weird machines…
out of Data transfers.

40

Instruction corruption

• Glitches may corrupt instructions (examples on ARM32)

• Single bit corruptions

• Multi bit corruptions

• Most chips are affected by this fault model

• Which bits can be controlled, and how, depends on the target, …

• As software is modified; any software security model breaks

add x0, x1, x3 = 10001011000000110000000000100000
add x0, x1, x2 = 10001011000000100000000000100000

ldr x0, [sp, #32] = 11111001010000000001001111100000
str x0, [x0, #32] = 11111001000000000001000000000000

• All devices transfer data

• From memory to memory

• Using external interfaces

Data transfers are a great target

Transferred data may be under attacker’s control

USB

UART

ETH

ROM

SRAM

Flash DDR

CPU

GSM RF

Let’s use it as a Fault Injection target…

memcpy()

• It’s everywhere.

• SW security: Parameters are typically checked (dest, src and n)

• Transferred content itself not considered security critical

PC control with Instruction corruption (ARM32).

44

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32
10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b18078 ldm r1!, {r3, r4, r5, r6, pc}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

PC set to attacker data. Control flow directly hijacked

Example: USB data transfer (ARM32)

Interface

(USB)

Input

buffer

Command

buffer

Command

handler

Output

buffer

Attacker data being transferred

Destination reg modified to PC

We regularly use this technique…

• Escalating privileges from user to kernel in Linux

• R00ting the Unexploitable using Hardware Fault Injection @ BlueHat v17

• Bypassing encrypted secure boot

• Hardening Secure Boot on Embedded Devices @ Blue Hat IL 2019

• Taking control of an AUTOSAR based ECU

• Attacking AUTOSAR using Software and Hardware Attacks @ escar USA 2019

https://www.slideshare.net/MSbluehat/kernelfault-r00ting-the-unexploitable-using-hardware-fault-injection
https://www.slideshare.net/CristofaroMune/blue-hat-il-2019-hardening-secure-boot-on-embedded-devices-for-hostile-environments
https://pure.tugraz.at/ws/portalfiles/portal/23511745/Attacking_AUTOSAR_using_Software_and_Hardware_Attacks.pdf

A peculiar attack

• The attack uses data…but it does not target ANY parser

• Targets instruction decoding

• Leverages addressable PC for ARM32:

• i.e. PC is a generic registers itself and can be explicitly assigned

• Execution flows outside the original program

47

Extension to multiple architectures…

48

49

More details here

Our research

• We identified multiple variants and techniques

• Yield arbitrary code execution:

• from controlled data only

• By corrupting instruction destination registers

• Sufficiently generic to work across multiple architectures

• Examples:

• Corrupting stored PC (in regs) or SP

• Hijacking jump/call (through registers)

• Corrupting callee saved regs (across function calls)

https://raelize.com/upload/research/2019/2019_PoC_Using-Fault-Injection-to-Turn-Data-Transfers-into-Arbitrary-Execution_CM-NT.pdf

Example: ARMv8 RET instruction

• Used for returning from a function call.

• Return address stored in register (default X30)

• It has the following encoding:

• RET instruction can encode any register (x0 to x30)

Real world example

• Google Bionic’s (LIBC) memcpy

• Copying 16 bytes executes the following code:

• Source data resides in x6 and x7

• Source data is not wiped before RET

• Glitch RET instruction into RET x6 or RET x7:

• Equivalently glitch ldr x6, … to ldr x30, …

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

PC hijacked from controlled data.

Data scope

• Attacker data may linger in registers, across function boundaries

• Even if out of scope, the data is still available

• An attack may still be possible, at a later point in the execution flow

52

Attack example.

53

54

A stack overflow…without SW vulns ☺

“Instruction corruption”: Recipe for success

• Identify data transfers you control

• Send sled of pointers

• E.g. Point to your shellcode location

• Glitch during ANY memcpy

• PC control

Attacking Secure Boot

• Payload loaded at img_addr

• Pointer sled after payload

• Glitch during pointer sled transfer

55

Signature

Flash

(Attacker)

Payload

pointers sled

(img_addr)

SW-based countermeasures bypass

• PC value set to img_addr

• Control flow hijacked

• SW-based countermeasures not executed

56

Signature

Flash

(Attacker)

Payload

pointers sled

(img_addr)

57

Very hard to protect against. Applicable to FI-resistant targets.

Key points

• SW-based countermeasures completely ineffective:

• Countermeasures code not executed

• The attack:

• does NOT target checks. Is unrelated to checks location (weak locality)

• Can target ANY data transfer before SW checks

Weird machines ingredients

• Memory not executable?

• We can always start a ROP chain (we have PC control!)

• We can combine multiple glitches

• if they are sufficiently separated in time

• E.g. We could do ROP and…

• jump to any infinite loop in the code, at a convenient location

• jump to our memcpy multiple times and transfer our payload multiple times

• …

58

Some open questions.

59

1

• Are “instruction skipping” faults a proper subset of “instruction

corruption faults”?:

• i.e. Can “instruction skipping” always be explained by instruction corruptions?

• Can experiments be designed to actually prove/disprove the above?

60

2

• For the first time the actual data being transferred becomes security

relevant

• Memcpy() is agnostic w.r.t to the transferred data

• Could we distinguish good data from attacker data?...without any

knowledge of data structure?

• If so, how?

61

3

• Can we prove that on all architectures, PC control can be obtained by

corrupting a limited number of instructions?

• Can we limit attack opportunities by sanitizing data that goes out of

scope?

• E.g. should we clean temporary registers when exiting a function? What would

be the impact?

62

4

• How many other relevant fault models are we missing?

• Can we somehow classify/identify them?

• E.g:

• given a single function and attacker-controlled data, can we formally describe all the ways to

achieve PC control?

• Can we design an ISA such as that instruction corruption becomes much less

relevant or much harder?

• E.g. hamming distance in instruction encoding?

63

Conclusion.

64

Final considerations

• Perturbations at the physical level can lead to unusual attacks

• Abstracting hardware/physics away is not always a good idea

• FI makes data-based attacks possible on software, without any parser

being involved

• Languages and systems are typically not designed to withstand recent

fault injection attacks

• We may benefit from a holistic view of systems security

65

Thank you! Any questions!?

66

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

	Default Section
	Slide 1: The Art of Fault Injection: Weird Machines all the way down
	Slide 2: Building up.
	Slide 3: Security boundaries
	Slide 4: Notes from Micro-architectural attacks [2017]
	Slide 5: Are we STILL missing something?
	Slide 6: Walking on thin ice…
	Slide 7: All the computing in the world relies upon…
	Slide 8: What can go wrong?
	Slide 9: Natural Phenomena
	Slide 10: Known (attack) techniques
	Slide 11: Interestingly…
	Slide 12: Fault Injection Reference Model (FIRM)
	Slide 13: It’s all our fault(s)!
	Slide 14: A fault propagation model
	Slide 15: Notes
	Slide 16: Let’s extend it
	Slide 17: Modeling faults.
	Slide 18: The observer’s challenge
	Slide 19: Notes
	Slide 20: Guess how FI affects code execution…
	Slide 21: Instruction skipping
	Slide 22: Typical attacks
	Slide 23: Example
	Slide 24: Notes
	Slide 25: Attack execution
	Slide 26: SW countermeasures: Multiple checks
	Slide 27: SW countermeasures: Making synchronization harder
	Slide 28: Observations
	Slide 29: A few common beliefs
	Slide 30: Untold assumption
	Slide 31: Is that true?
	Slide 32: Test code: Counter (unrolled loop)
	Slide 33: Data analysis (1)
	Slide 34: Something weird…
	Slide 35: …and weirder…
	Slide 36: Some hints
	Slide 37: Our instruction (+ encoding)
	Slide 38: Occam’s razor
	Slide 39: Instruction skipping…does NOT exist
	Slide 40: Weird machines… out of Data transfers.
	Slide 41: Instruction corruption
	Slide 42: Data transfers are a great target
	Slide 43: memcpy()
	Slide 44: PC control with Instruction corruption (ARM32).
	Slide 45: Example: USB data transfer (ARM32)
	Slide 46: We regularly use this technique…
	Slide 47: A peculiar attack
	Slide 48: Extension to multiple architectures…
	Slide 49: Our research
	Slide 50: Example: ARMv8 RET instruction
	Slide 51: Real world example
	Slide 52: Data scope
	Slide 53: Attack example.
	Slide 54: “Instruction corruption”: Recipe for success
	Slide 55: Attacking Secure Boot
	Slide 56: SW-based countermeasures bypass
	Slide 57: Key points
	Slide 58: Weird machines ingredients
	Slide 59: Some open questions.
	Slide 60: 1
	Slide 61: 2
	Slide 62: 3
	Slide 63: 4
	Slide 64: Conclusion.
	Slide 65: Final considerations
	Slide 66: Thank you! Any questions!?

