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Building up.
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Notes from Micro-architectural attacks [2017]

• Security models aren’t just a Software (SW) thing

• Most of the Hardware (HW) has no idea of security boundaries:

• unless factored in during design

• HW resources shared across security boundaries can be problematic

• It’s painful to recover



Hardware
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Walking on thin ice…

• The whole computing model assumes 

that:

• the right logical values

• are correctly represented

• at the rising edge

• of each clock cycle. 

• Everywhere

• That’s why we have constraints on 

operating conditions (e.g. 

temperature range)

Zussa et al –“Analysis of the fault injection mechanism related to negative and 

positive power supply glitches using an on-chip voltmeter” - [ZDRC2014]

https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf


All the computing in the world relies upon…
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Sampling the correct data

A few billions of times per second

Everywhere (in billions of gates)

Every time. Every single time.



What can go wrong?

8



9

Natural Phenomena

Ziegler, Lanford –“Effects of cosmic rays on computer memories” 

(1979)

May, Woods –“Alpha-particle-induced  soft errors in dynamic  memories” 

(1979)

https://www.science.org/doi/10.1126/science.206.4420.776
https://ieeexplore.ieee.org/document/1479948


Known (attack) techniques

3.3 V

Time

4.0 V

1.0 V

Clock

Time

Voltage

Clock

Temperature

Electro-magnetic field

Laser (“Nexus-6” kitten)



11

Most of them involve transfer of energy

Interestingly…



Fault Injection Reference Model (FIRM)
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It’s all our fault(s)!
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A fault propagation model
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Notes

• Geared towards faults in software execution:

• Not everything is instructions

• Attack against non-CPU subsystem do not easily fit:

• JTAG

• OTP

• RNGs

• …

• Example:

•  Hardwear.io USA 2022 -"Breaking SoC Security by Glitching OTP Data Transfers" [Raelize]
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https://raelize.com/upload/research/2022/hardwear_io_US2022_-_Breaking_SoC_Security_by_Glitching_OTP_Data_Transfers_v1.0.pdf


Let’s extend it
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Modeling faults.
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The observer’s challenge
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ALL the faults introduced in 

a system

Faults that CAN be observed

Faults that ARE being observed 

Faults useful for an attack



Notes

• Describing all the faults actually introduced in a system is possibly 

infeasible:

• We need to observe them to identify them

• Still, it may be possible to formally describe fault models geared 

toward specific attacks
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Guess how FI affects code execution…
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“It is as if…we skipped that instruction”

Instruction skipping

• The most common description of FI effects (fault model) on CPU 

execution:

• Been with us for at least 3 decades ☺

• First attacks mostly targeted security relevant decisions

• Smart Card pin authentication

• Signature checks

• …



Typical attacks

• Targets:

• Conditionals:

• To “skip” the compare instruction

• Function calls:

• To “skip” the execution of a security relevant function

• Infinite loops:

• To “skip” the current instruction an fall into the next one

• This requires precise targeting of specific instructions:

• Strong timing requirements

• Potential targets are easy to predict
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Example
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Notes

• “Instruction skipping” models fault at the instruction execution level

• The original program continues to be executed

• We just take an unintended branch in a decision

• Hard to jump at arbitrary locations
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Attack execution

• “Instruction skipping” 

requires accurate timing

• Can be executed 

blindly:

• i.e. no assumption on 

type of fault

• “Glitch ‘n pray”
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SW countermeasures: Multiple checks

• Attack assumption:

• A glitch is required for 

every check

• One instruction, one 

glitch

• Mitigation: Perform 

multiple checks
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SW countermeasures: Making synchronization harder

• Attack assumption:

• A glitch must “hit” that 

instruction at a specific 

point in time

• Mitigation: 

• Random delays are 

introduced around 

critical checks
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Observations

• SW-based countermeasures are widely used in the industry and academia

• Multiple checks and random delays are two prominent examples

• Additional countermeasures available

• Commonly advised and implemented in FI-resistant targets

• They reduce attack success rate:

• Multiple glitch required

• Attack timing more difficult
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A few common beliefs

• “Software is vulnerable to FI”:

• Wrong. Hardware is.

• Source code reviews for fault injections are considered a proper tool 

for spotting “FI vulnerabilities”:

• We will understand why that is not the case, shortly
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Untold assumption
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Instruction skipping is the relevant fault model



Is that true?
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Test code: Counter (unrolled loop)

Add instruction: adds 1

Macros

Target code

1024 add instructions (Unrolled loop)

Trigger (GPIO26): Up

Trigger (GPIO26): Down



Data analysis (1)

Instruction skipping



Something weird…

How do we explain these results

with instruction skipping?



…and weirder…

What are the values in these responses?
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A memory address? how?

Some hints
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What could be happening?

Our instruction (+ encoding)

Opcode Op1 ( t ) Op2 ( s ) Immediate ( r )



Occam’s razor

• Glitches are most likely corrupting instructions

• “Instruction corruption” explains all the responses we see

• Responses slightly above 0x400 → Immediate corruption

• Responses containing a memory address → Source register corruption

• Responses below 0x400 (i.e. “instruction skipping”)

• Instruction is mutated into one without side effects. E.g: addi.n a8, a8, 0

• Also all the exceptions can be explained!



Instruction skipping…does NOT exist

• Well, it MAY still exist…:

• But we have a better explanation now for it

• Instruction is likely corrupted to become a NOP-equivalent instruction:

• i.e. an instruction with no relevant side-effects

• Examples:

• orr r0, r0, r0

• add r0, r0, #0

• … 
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Weird machines…
out of Data transfers.
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Instruction corruption

• Glitches may corrupt instructions (examples on ARM32)

• Single bit corruptions

• Multi bit corruptions

• Most chips are affected by this fault model

• Which bits can be controlled, and how, depends on the target, …

• As software is modified; any software security model breaks

add x0, x1, x3    = 10001011000000110000000000100000
add x0, x1, x2    = 10001011000000100000000000100000

ldr x0, [sp, #32] = 11111001010000000001001111100000
str x0, [x0, #32] = 11111001000000000001000000000000



• All devices transfer data

• From memory to memory

• Using external interfaces

Data transfers are a great target

Transferred data may be under attacker’s control

USB

UART

ETH

ROM

SRAM

Flash DDR

CPU

GSM RF



Let’s use it as a Fault Injection target…

memcpy()

• It’s everywhere.

• SW security: Parameters are typically checked (dest, src and n)

• Transferred content itself not considered security critical



PC control with Instruction corruption (ARM32).
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00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32
10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b18078 ldm r1!, {r3, r4, r5, r6, pc}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

PC set to attacker data. Control flow directly hijacked

Example: USB data transfer (ARM32)

Interface 

(USB)

Input 

buffer

Command 

buffer

Command

handler

Output 

buffer

Attacker data being transferred

Destination reg modified to PC



We regularly use this technique…

• Escalating privileges from user to kernel in Linux

• R00ting the Unexploitable using Hardware Fault Injection @ BlueHat v17

• Bypassing encrypted secure boot

• Hardening Secure Boot on Embedded Devices @ Blue Hat IL 2019

• Taking control of an AUTOSAR based ECU

• Attacking AUTOSAR using Software and Hardware Attacks @ escar USA 2019

https://www.slideshare.net/MSbluehat/kernelfault-r00ting-the-unexploitable-using-hardware-fault-injection
https://www.slideshare.net/CristofaroMune/blue-hat-il-2019-hardening-secure-boot-on-embedded-devices-for-hostile-environments
https://pure.tugraz.at/ws/portalfiles/portal/23511745/Attacking_AUTOSAR_using_Software_and_Hardware_Attacks.pdf


A peculiar attack

• The attack uses data…but it does not target ANY parser

• Targets instruction decoding

• Leverages addressable PC for ARM32:

• i.e. PC is a generic registers itself and can be explicitly assigned

• Execution flows outside the original program

47



Extension to multiple architectures…
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More details here

Our research

• We identified multiple variants and techniques

• Yield arbitrary code execution:

• from controlled data only

• By corrupting instruction destination registers

• Sufficiently generic to work across multiple architectures

• Examples:

• Corrupting stored PC (in regs) or SP

• Hijacking jump/call (through registers)

• Corrupting callee saved regs (across function calls)

https://raelize.com/upload/research/2019/2019_PoC_Using-Fault-Injection-to-Turn-Data-Transfers-into-Arbitrary-Execution_CM-NT.pdf


Example: ARMv8 RET instruction

• Used for returning from a function call.

• Return address stored in register (default X30)

• It has the following encoding:

• RET instruction can encode any register (x0 to x30)



Real world example 

• Google Bionic’s (LIBC) memcpy

• Copying 16 bytes executes the following code:

• Source data resides in x6 and x7

• Source data is not wiped before RET

• Glitch RET instruction into RET x6 or RET x7:

• Equivalently glitch ldr x6, … to ldr x30, …

memcpy: 
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

memcpy: 
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

memcpy: 
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

PC hijacked from controlled data.



Data scope

• Attacker data may linger in registers, across function boundaries

• Even if out of scope, the data is still available

• An attack may still be possible, at a later point in the execution flow

52



Attack example.
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A stack overflow…without SW vulns ☺

“Instruction corruption”: Recipe for success

• Identify data transfers you control

• Send sled of pointers

• E.g. Point to your shellcode location

• Glitch during ANY memcpy

• PC control



Attacking Secure Boot

• Payload loaded at img_addr

• Pointer sled after payload

• Glitch during pointer sled transfer
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SW-based countermeasures bypass

• PC value set to img_addr

• Control flow hijacked

• SW-based countermeasures not executed
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Very hard to protect against. Applicable to FI-resistant targets.

Key points

• SW-based countermeasures completely ineffective:

• Countermeasures code not executed

• The attack:

• does NOT target checks. Is unrelated to checks location (weak locality)

• Can target ANY data transfer before SW checks



Weird machines ingredients

• Memory not executable?

• We can always start a ROP chain (we have PC control!)

• We can combine multiple glitches

• if they are sufficiently separated in time

• E.g. We could do ROP and…

• jump to any infinite loop in the code, at a convenient location

• jump to our memcpy multiple times and transfer our payload multiple times

• …
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Some open questions.
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1

• Are “instruction skipping” faults a proper subset of “instruction 

corruption faults”?:

• i.e. Can “instruction skipping” always be  explained by instruction  corruptions?

• Can experiments be designed to actually prove/disprove the above?

60



2

• For the first time the actual data being transferred becomes security 

relevant

• Memcpy() is agnostic w.r.t to the transferred data

• Could we distinguish good data from attacker data?...without any 

knowledge of data structure?

• If so, how?
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3

• Can we prove that on all architectures, PC control can be obtained by 

corrupting a limited number of instructions?

• Can we limit attack opportunities by sanitizing data that goes out of 

scope?

• E.g. should we clean temporary registers when exiting a function? What would 

be the impact?
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4

• How many other relevant fault models are we missing?

• Can we somehow classify/identify them?

• E.g:

• given a single function and attacker-controlled data, can we formally describe all the ways to 

achieve PC control?

• Can we design an ISA such as that instruction corruption becomes much less 

relevant or much harder?

• E.g. hamming distance in instruction encoding?
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Conclusion.
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Final considerations

• Perturbations at the physical level can lead to unusual attacks

• Abstracting hardware/physics away is not always a good idea

• FI makes data-based attacks possible on software, without any parser 

being involved

• Languages and systems are typically not designed to withstand recent 

fault injection attacks 

• We may benefit from a holistic view of systems security

65



Thank you! Any questions!?
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