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Abstract—SQL injection remains an important vulnerability
class for multiple reasons, including poor code-data separation
in the access protocol, and excessive trust placed in diverse
applications to enforce schema rules. Exploitation of SQL in-
jection elevates privilege from the application user context into
the application context. This work proposes to eliminate any
distinction between those two contexts, but preserves the ability to
use standard web authentication mechanisms and accommodates
the needs of applications that manage their own users and serve
a large-scale user base. The solution places responsibility for
API definition and user authorization in the database schema. A
comparative advantage over existing approaches is discussed.

Index Terms—Structured Query Language (SQL), stored pro-
cedures, web applications, SQL injection, confused deputy at-
tacks, cybersecurity, injection attacks, language-theoretic security

I. INTRODUCTION

SQL injection, a class of software vulnerability wherein
an attacker manipulates SQL database queries made by an
application, has been a source of grief for some time.

As an injection attack, it can be viewed as a violation of
the code-data boundary with respect to the serialization of a
SQL query made by the vulnerable application. This view-
point leads to several approaches to stopping it. Filtering (or
“sanitizing”) input is particularly common, though problematic
for some input types. Some programmers opt to forego many
relational database features to use an object-relational mapping
(ORM) library which compiles SQL queries. Programs that
do not need to generate dynamic SQL can use parametrized
queries to put query parameters out of band from the data. It is
also possible to write a limited-purpose compiler to generate
dynamic SQL that will be constrained to the structures the
application programmer intends. All of these defenses have
significant drawbacks or cost. Further, all of them address how
an attacker might send arbitrary queries to the database, but
none of them address the consequences should an attacker
manage to do so.

SQL injection can also be thought of as a confused deputy
attack, because the application being attacked is confused into
using its privileged access to the backend database to perform
otherwise-unauthorized operations.

When an attacker succeeds at getting SQL injection to work,
the effects can be as catastrophic as arbitrary read and write

to the data and even its schema, resulting in a total loss of
each of confidentiality, integrity, and availability. This impact
is a consequence of applying a model wherein the front-end
application, not the database, provides and implements the
definition of what interactions are possible or permitted with
the data by its user.

The purpose of a relational database management system is
to provide a structure, called a schema, through which data
may be stored and queried. The structure gives the types of
data stored and a mechanical description of how they relate
to another; one record, such as a customer, may refer to
a number of associated records of different types, such as
that customer’s tickets. This gives rise to relational algebra,
the method by which these records are efficiently queried.
Databases traditionally include within the schema not only the
relations (tables) in which the data are stored, but also sets of
defined queries against these data in the form of views, stored
procedures, functions, constraints, and triggers. Together, these
schema elements ensure the well-formedness of the data in the
database, including not only its type but also the concept of
relational integrity. In this way, the database schema forms a
protocol-like definition of data, though the data are stored and
not interchanged.

The relational database was introduced in 1970 [5]. Since
then, innovations have occurred along other lines, including
the introduction of unstructured data stores. Although expedi-
ent for storing data from a variety of sources for later analysis
among mutually trusting parties, the lack of a definition of this
data renders it difficult to secure in mixed-access scenarios
where a multitude of users have access to perform a subset of
operations on a subset of the data. While the problem appears
tractable, exchanging SQL for another query language and
exchanging RDBMS for other data management paradigms
do not make the problems of injection attacks and conditional
access control go away [6].

A. Prior Work

Although there is some evidence for approaches like this
one in industry, very little prior research concerns the encap-
sulation of a data API or a similar structure in a database, or
authenticating application end users to such an API.
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1) Many-Layered Approach: Some authors have proposed
the use of parametrized queries, stored procedures, and least
privilege, in combination, to prevent SQL injection, e.g. [2].
To this point, it does not appear that any have proposed an ap-
plication of these techniques to create a layer that categorically
prevents the success of SQL injection attacks; rather, these are
to this point viewed as complimentary approaches to strategies
like input filtering (“sanitization”), signature detection in a web
application firewall, machine learning or clustering algorithms
to characterize and winnow out malicious input, and escaping
strategies. This falls short; rather than seeking a collection of
partially effective measures, we should seek an architecture
that solves the problem for good.

B. Stored Procedures

In describing the longevity of the SQLi problem, [11] hints
at the use of stored procedures to put logic out of reach of
the application, and at allow-listing queries to constrain the
application; the OWASP guidance cited by that work1 does not
relate the two concepts or address how to constrain database
callers to allowed operations. Reference [1] approaches a
description of a data API, but does not address end-user
authorization either, and protects the database with input
sanitization rather than permissions even though the queries
are rendered as stored procedures.

1) LangSec: If the web application part of an application
stack is viewed as an interface to the database code, it certainly
fails to minimize the complexity of pre-validation code as
recommended in [13]. Rather, it implements a multitude of
validations and transforms: request input, authorization, filter-
ing, translation of the request into one or more SQL queries,
interpretation of the output, and encoding of its response. Each
of these layers might give rise to some vulnerability resulting
from a parser differential. It therefore follows that these steps
must be either verified, or eliminated, if we are to be able to
end the reign of SQL injection.

Web applications can only be viewed this way because the
database trusts the web application in the typical architecture;
the web application is given full access to read and modify the
data within its scope, if not administrator access to perform all
operations on the database. If the database instead encapsulates
the intended operations and authorization rules, the complexity
of the application is irrelevant with respect to SQL injection.
This will be the thrust of this work.

2) PostgREST: The PostgREST library, which directly
translates arbitrary REST calls into arbitrary SQL, supports
JWT authentication and passes JWT claims into the database
as a transaction-scoped setting, so that they can be requested
with current_setting(). While this use of transaction-
scoped settings has many features of this work, the web
application (in this case, merely PostgREST) is still respon-
sible for validating the JWT and for asserting the claims it
makes to the database. Checks for JWT revocation must be

1https://cheatsheetseries.owasp.org/cheatsheets/SQL Injection Prevention
Cheat Sheet.html

performed on the basis of this data, and the database does not
validate the JWT itself. Therefore, an attacker who can inject
SQL into the connection could forge trusted authentication
data, impersonate another user, or resurrect a revoked token.
Notwithstanding, the PostgREST library could be combined
with this work to directly expose the data API to HTTP callers.

C. Impetus to Change

Although it is a porous and restricting mitigation [15], many
authors still persist in recommending input sanitization as a
technique to prevent SQL injection.

As at its last publication in 2021, the OWASP included
injection attacks (including SQL injection) in its Top 10 list,
indicating it remains a serious problem in spite of ubiq-
uitous advice on its prevention. MITRE assigns CWE-89
to “improper neutralization of special elements used in an
SQL command (‘SQL injection’)”, a title which indicates the
historical focus on escaping. 2,503 CVE records issued in
2024 mentioned SQL injection, and this captures only data
about published software that provides detailed vulnerability
disclosure. Other instances of SQL injection, for example
instances of SQL injection affecting the proprietary software
of cloud SaaS providers, are not captured in that count.

Removing complexity and simplifying data interchange are
proven methods to reduce the incidence of security vulner-
abilities. As commonly used between applications and their
data stores, SQL exposes excess functionality that can be
used by an attacker to modify (or even redefine) data, or
simply make off with all the data in an application. This is a
general property of data querying and modifying languages,
and “noSQL injection” also exists as a vulnerability class.
It therefore follows that subsetting the query language, not
necessarily replacing it as with noSQL, offers a way to address
this type of vulnerability. This accords with the standard
LangSec approach that the power and complexity of interfaces
should be limited to the minimum necessary, in the interest of
security.

II. REMOVING THE VULNERABLE LAYER

If SQL injection relies on exploiting parser differentials in
the web application and then using the web application as a
confused deputy to carry out the attacker’s bidding, then it
follows that an application architecture which does not rely
on the web application to defend against these threats will not
be vulnerable to them.

The following sections decompose the solution into these
two parts: defining a data API, and then performing authen-
tication and authorization in that data API. This removes
responsibility from the web application layer in two areas;
respectively, defining the full set of operations that can be
performed against the data, and authenticating and authorizing
the user. The web application then serves only to marshal and
present the data to the user.

This strictly reduces the attack surface of the system in
general. In existing architectures, the operations that can be
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performed against data with access to the database connec-
tion has been a superset of those operations which can be
performed via the application. Moving this complexity to the
database does not increase the computational power of the
database as exposed to potential attackers, but it does decrease
the complexity that the web application exposes to them.

III. DEFINING A DATA API

While much latter work has focused on defining APIs in
terms of REST and HTTP, nearly any protocol can define a
coherent and useful API. To implement an API, it must be
possible to define logical operations, with defined and typed
parameters, against some data set. If the API has different
behaviour depending on the identity of the entity interacting
with it, then it must also support some kind of authentication
scheme.

PostgreSQL clearly supports both of these building blocks:
applications can authenticate to the database using a role,
and it is possible to define stored procedures with which the
application can then interact. Those stored procedures can
perform defined create, retrieve, update, and delete operations.
However, the authentication directly provided by PostgreSQL
is not by itself sufficient for API-oriented use cases with large
numbers of different callers; this will be elaborated on in
following sections.

By defining an API with which the application can interact,
it is possible to encapsulate the set of operations which may
be performed on the database within one body of functions
and procedures. They are separate from the application, and
they can be logically separated from the rest of the database
schema as well.

One can define such an API by defining a series of functions
(which must return a value) and stored procedures (which
may not return a value, but are otherwise for most purposes
equivalent to functions) in the database. These each have
the same basic structure: they check whether the caller is
allowed to perform the operation requested with the parameters
requested, perform the operation, and return the results, if
any. In order to enforce the permissions, the functions and
stored procedures are defined with the SECURITY DEFINER
option; this is equivalent to a SUID executable to which
unprivileged users have execute access on a UNIX system.
The permissions of the privileged user may thus be used only
in a structured way by the unprivileged caller [19]. Although
this approach has been used in industry, it is rarely discussed
in the literature.

The use of the SECURITY DEFINER primitive is pivotal
to the function of this architecture. SQL generally permits
subqueries to substitute for values, and therefore a malicious
user might still be able to make arbitrary queries by passing
them as parameters. With SECURITY DEFINER, the func-
tion parameters are still processed with the permissions of
the invoker; therefore, the database is able to enforce the
requirement to pass queries through the data API layer and
will refuse to evaluate such subqueries. An approach which
attempts to filter queries such that they only invoke the data

API, while granting all permissions to the invoker as in a
traditional architecture and avoiding the use of SECURITY
DEFINER, may not succeed at enumerating all possible ways
an arbitrary query could still be made.

IV. BINDING USERS TO DATABASE ROLES

A. Database-Native Authentication

It is clearly undesirable for each application user to be
granted individual database credentials which the operator of
the database must then manage. First, application users are
typically a construct of the application, and relate to data
within the application’s database. Roles exist outside of the
relations. Second, databases with millions of defined roles
are unusual therefore not well supported. Third, the need
to connect to the database using some role complicates the
manner by which the application can mediate the connection
to the database: if a user presents a JWT, how does the
application authenticate to the database while connecting as
that user, and how is the credential in the database maintained?
These issues are awkward enough that an alternative scheme
is clearly needed.

B. Database Session Binding

Instead of having users authenticate directly to the database,
it is possible to bind the user’s authenticated session to the
open database connection which makes their queries. This
has some drawbacks; queries must then be predicated on a
connection identifier, which must be bound to the user with
an additional relation which would then need to be queried
for nearly all operations. Moreover, it would not be possible
to pool connections that could be used by multiple users, but
connection pooling is often used to improve practical database
performance in applications with many users.

C. Data-Tier Authentication

Alternatively, it is possible for the stored procedures com-
prising the data API to accept an authentication token which
the application passes through to the database. This token
could simply be a database-resident session token which the
application passes through with every query. In applications
that use stateless authentication, the token could be the same
JWT used to access the application; there exists a pure
SQL implementation of JWT verification.2 This alternative
is preferable because it limits the authorization scope to a
single request; therefore, there is no possibility of data being
injected into an authenticated channel by another user, and
the application has the flexibility to pool, share, and re-route
connections.

If the application does not benefit from the use of JWT, it is
conceptually possible to implement this strategy by passing a
session token or API token instead of a JWT; the database must
then store a list of valid tokens and their associated relevant
metadata, and query this at authentication time.

2https://github.com/michelp/pgjwt. An Oracle PL/SQL implementation also
exists at https://github.com/morten-egan/jwt ninja.
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V. EXAMPLE CODE

This example gives a pl/pgsql listing of a stored procedure
which effects a field update if and only if the user is authenti-
cated and is performing the operation on a row they own. The
authorization layer could be abstracted into a sub-procedure
describing the check to be performed; the use of exceptions
prevents further execution of the procedure in the event of a
failure, even in a sub-procedure. This represents a recognizer
pattern implementation of the authorization logic [4].

CREATE PROCEDURE AuthUser(
jwt VARCHAR,
targetUser INT

)
LANGUAGE plpgsql
SECURITY DEFINER
AS $$
DECLARE

authInfo RECORD;
BEGIN

authInfo = verify(jwt, ’secret’);
IF NOT authInfo.valid

THEN
RAISE EXCEPTION
’auth failed’;

END IF;
IF NOT targetUser =

(authInfo.payload->>’sub’)::INT
THEN
RAISE EXCEPTION
’unauthorized’;

END IF;
-- Could also check JWT revocation here

END; $$;

CREATE PROCEDURE APIUpdateProfile(
jwt VARCHAR,
targetUser INT,
newText VARCHAR

)
LANGUAGE plpgsql
SECURITY DEFINER
AS $$
BEGIN

-- Authorization Call:
CALL AuthUser(

jwt, targetUser);
-- Could also make checks here and throw if they fail

-- Application logic:
UPDATE profile

SET text = newText
WHERE userid = targetUser;

END; $$;

A. Analysis

It is advantageous to choose a prefix for exposed data API
functions and for authentication functions, in a manner similar
to Hungarian notation, to allow trivial mechanical verification
of the layers, since standard SQL does not offer a type system
that can be used to verify these constraints.

The objectives of verification should be to show that:
1) The application user is only allowed to call functions

and procedures from the data API, e.g. those starting
with API

2) Every function in the data API, e.g. those starting with
API, begins with one or more calls to a procedure from
the authorization layer, e.g. those starting with Auth, or
an annotation that no authorization rules apply to it

3) All authorization happens before other logic, i.e., au-
thorization happens at the beginning, and then no au-
thorization decisions are made following the start of
non-authorization logic; this prevents shotgun parsing,
making the next step much more tractable

4) The applied authorization rules embody the intent of the
application and its security model

The fourth item is of course not mechanically verifiable,
as it is a question of intent. The first three can be easily
and deterministically verified through static analysis, as they
are regular in complexity and have no runtime components.
Verification of the fourth can be effected by a systematic
manual review, but linear review of the code will suffice
because it necessarily reduces to statements of the form
“callers may perform this operation given these authorizations,
with parameters such that...”. This pattern offers an opportu-
nity to prevent authorization bypass vulnerabilities caused by
developer oversight.

A more general discussion of verification that the recognizer
pattern is properly applied and effective follows in section VII.

VI. COMPARISON WITH OTHER TECHNIQUES

This method can be contrasted with other schemes used to
provide a compensating control against application compro-
mise or to remove responsibility for data protection from the
application.

A. Application Firewalls

An application firewall, such as a web application firewall,
is used to filter user queries and reject input that is suspected
to be malicious. Such a firewall relies on definitions of
known attack types; for instance, user input that contains SQL
keywords, that contains substrings that are syntactically valid
SQL statements, or that contain the SQL comment sequence
-- can be rejected. User input passes through the application
firewall before being processed.

The application firewall is thus a validating parser. It could
act as a validation layer for the underlying application if,
and only if, its definitions represent a correct and restrictive



parser for the application’s valid input grammar. Unfortunately,
application firewalls are typically unrelated to an application’s
input semantics and computation model; they seek to identify
and block generic “malicious” input. They contain definitions
for common attacks generally, but unless specific definitions
for some application are amenable to description to the web
application firewall and are written by developers for that
purpose, they are limited to these generic definitions [17].
They are therefore subject to both false positive and false
negative errors.

The error potential results from a fundamental differential
between the firewall’s definition of malicious input and what
input might be malicious in the context of the application at
hand. This is diametrically opposed to the present approach
of incorporating permissions into the database schema, which
avoids questions of input validity altogether and instead makes
an application-specific decision as to whether some operation
respecting the data should be allowed.

Later work in application firewalls magnifies the problem
by attempting to dispense with the need to make definitions
altogether in favour of stochastic machine learning approaches
[7]. While this produces better results than attempts to build
a general grammar for malicious input by hand, it still fails
to address the fundamental application-specific nature of ex-
ploitation, and it is unsurprising that no work in this vein takes
application specifications or code as part of its input.

Where domain-specific semantics are applied, it is often
only in feature extraction and only with reference to a broad
domain such as HTML because the desire is to build a non-
application-specific model, for example [18].

Just as applications that do not rely on a multi-layered
proxy architecture (as applications such as those built in Java
Spring do, for example) do not benefit from protection against
“request smuggling” offered by a WAF, applications built
against a data API instead of a general SQL interface to the
database will not benefit from such generic protection against
SQL injection. The false positives remain a hindrance.

B. Delegated Authorization

A delegated authorization microservice makes real-time au-
thorization decisions based on some predicate, and is invoked
by application software when it needs to compute authoriza-
tion policy [16]. Unlike the proposed model, the delegated
authorization microservice does not offer structural protection
against any type of attack; its purpose is to encapsulate
complex policy evaluation logic. The proposed solution offers
the same benefits provided that the relevant policy can be
implemented in pl/pgsql or similar; though it is included in
the database schema, structured programming techniques can
separate it from other schema components.

Even if a delegated authorization microservice is used so
that policy evaluation is encapsulated away from other appli-
cation code, it still remains that some part of the application,
whether that is its own data-interfacing microservice or several
different microservices in the application, still has access to
perform at least the union of all operations required by all its

callers. Therefore, an attacker could still gain elevated access
through an injection attack, provided that the predicates of the
query as parsed by the application result in a positive autho-
rization decision by the delegated authorization microservice.

In theory such a service could act as a security monitor by
inspecting the user query for maliciousness, but this would be
essentially identical to an application firewall; to be successful,
it would need a precise definition of the protected application’s
input language. This would muddy the abstraction intended
by making a delegated authorization microservice in the first
instance.

C. Row-Level Security

One scheme for authorizing access to data within a rela-
tional database is to apply row-level security. This effectively
adds a where-condition to DQL statements, and an additional
check constraint to DML statements, depending on the user’s
role and what relations they have incorporated in their query.
The condition and constraint can be arbitrary SQL, which al-
lows use cases ranging from constraining a role to records only
within one business unit to adding a security descriptor to each
record in a relation. Though similar to the method described
in this work, this scheme has two important drawbacks: it
assumes every application user has a unique identity in the
database’s access control system, and it requires that rules for
data access be expressed in the ways described. This latter
drawback can reduce encapsulation; for example, consider a
rule that an update time column must be set to the current
time upon every user query that updates a record. This cannot
be enforced by any of the security mechanisms, but rather by
a trigger that updates the relevant timestamp after the update.
If some user must be allowed to override these timestamps,
still more complexity arises.

Row-level security as implemented in PostgreSQL, us-
ing the CREATE POLICY FOR SELECT and CREATE
POLICY FOR UPDATE statements, makes use of a query
modification approach. In essence, the terms of the policy
are added to every query to which the policy applies. This
offers a way to constrain some of the power offered by
exposing a SQL interface, but the complexity and the questions
attendant to it remain. For example, a query so restrained
may appear superficially to be a self-contained query, but will
return different results based on outside factors unrelated to the
selection parameters in the query, and unrelated to the content
of the relations that are relevant to those selection parameters.
This annuls the soundness of the DBMS [20].

D. Input Sanitization

Although often mentioned, filtering user input, often called
input “sanitization”, is an ineffective technique for the pre-
vention of SQL injection. There are two basic strategies for
performing it. The first strategy is to filter out any characters
which might be interpreted by one stage of the data processing
pipeline as control, and either remove them or reject the input.
Because SQL is a human-readable protocol, these characters
encompass many printable characters which reasonably appear



in data strings; therefore, it is often necessary to resort to a
second strategy, escaping. Escaping either places an escape
character before what might otherwise be a control character,
or encloses data that might contain control characters which
are not to be interpreted as control characters within some
control suppression block like square brackets or quotes.

Among other problems with this approach, it is occasionally
the case that a parser differential exists either between different
stages of the pipeline or between the transform or filter and
the database. Therefore, it may be possible to bypass input
sanitization via double escaping, or by placing multi-character
control tokens (in SQL, for example, the comment sequence
--) separated by characters which will be removed. It is
common to search for input sanitization bypasses using fuzz
testing, the sending of random input, as it is difficult to prove
that nothing in the input string will be executed as SQL code
by the database (or that it will not modify or truncate some
existing code).

For this reason, the sanitization approach is expensive and
pourous, and violates encacpsulation by exposing SQL gram-
mar to the application (for example, if “special characters”
are prohibited in some input fields). Although it was once the
consensus recommendation, it should be avoided.

A parallel discussion of why this approach is ineffective
to protect HTML parsers is available at [12]. Though HTML
processing is different from SQL processing, it is relevant that
different dialects of SQL are differently injectable; while this
work focuses on PostgreSQL, it could in principle be applied
to any database that supports a JWT-parsing function, the
definition of functions and stored procedures, and a restrictive
permission model similar to PostgreSQL.

E. Parametrized Queries

Although parameterized queries3 are very effective at pre-
venting SQL injection [14], the application still remains
responsible for enforcing authorization constraints and for
protecting the database credential. Additionally, just as a stored
procedure that contains an EXECUTE call may be injectable,
some dynamically-constructed parametrized queries may be
injectable. The same reasons call for dynamic construction
in each case, particularly in scenarios like accepting dynamic
user filters for data tables, where both table names and
where-clauses would result in combinatorial explosion if not
dynamically constructed.

Contrasted with the method of this paper, merely us-
ing parametrized queries with otherwise application-defined
queries leaves the database open to attack by several classes
of attacker:

1) Those who gain remote code execution on the applica-
tion server, even if they can only see their own worker
and therefore cannot steal other users’ credentials.

2) Those who can disclose the server’s configuration, in-
cluding the database password, and also connect to

3Some authors call these prepared statements; for the avoidance of confu-
sion with the PREPARE command, they are referred to here as parametrized
queries.

the database either directly or through some proxy or
alternative channel.

3) Those who can modify the application.
Though the ability to modify the application implies a high

degree of trust, using a data API with data-tier authentication
can prevent threats in scenarios where multiple applications
access the database and not all are under the same administra-
tive control, even where the applications require overlapping
access to relations and cannot be mutually isolated via the
database’s permission system.

F. Identifier Masking

In 2004, reference [3] proposed to include a random string,
configured in the application, appended to every SQL iden-
tifier. A validating proxy then checks for the presence of
the correct random string on every SQL identifier in incident
queries and strips it out. This approach has several drawbacks.
First, it does not protect against payloads that do not state
any identifiers. Second, the random string is either hardcoded
or configured in the application, so that an attacker who
can disclose local files could also disclose the configured
random string. Third, an attacker given unlimited attempts
could guess the string and their guess would remain valid until
the application is re-configured.

This approach is, as the authors state, essentially an appli-
cation of the same strategy as instruction set randomization.
It could be made more general by creating an arbitrary
substitution map for identifiers in the application, so that
injected strings would be nonsense (it is not clear whether a
block or stream cipher would succeed, since the challenge is to
find those specific characters which have been introduced by
an attacker rather than by the application). This generalization
would have the same drawbacks.

Additionally, the proxy introduces an additional layer of
authentication and another parser with the attendant threats
from incorrect implementation. Authentication to either the
database or the proxy would suffice to grant access to the
database, and the proxy represents another software package
that might store the database credential somewhere an attacker
could get it. Database SQL parsers are notoriously complex,
and parser differentials between the validating proxy and the
DBMS are probable unless the same parser can be used in both
cases, since the SQL is being parsed twice; it is therefore not
out of the question that there could be SQL injection in the
validating proxy.

G. Control Flow Analysis

Some authors propose to build a model of intended ap-
plication program execution, either using static analysis [9]
or taint tracking [10], and check whether queries that are
sent to the database could have been constructed by the
application. If they could not have been, then they must
be SQL injection. This approach has two critical problems.
First, not all instances of SQL injection must make queries
that the application would not make; an attacker may simply
wish to make queries that they personally are not allowed



to make, or even simply to make the queries out of order
or with invalid parameters. Such a model, to succeed, would
therefore need to incorporate not only the full complexity
of the likely Turing-complete application code, but also the
complexity of the data processed by the application and of the
application’s authorization functionality. The model evaluation
could therefore be even more complex even than the vulnerable
application was in the first place. Second, this approach can
only be applied where the target program is amenable to the
static analyzer, placing limitations on how the application can
be written and what languages it can be written in.

If it is possible to build a model of all queries generated
by an application, it follows that it should be possible to
incorporate these queries into the schema of the database and
dispense with the complexity of the checker.

VII. SECURITY ANALYSIS

A database architected in this way requires only two anal-
yses to be secure:

1) For all functions and stored procedures, that the opera-
tions they perform are the intended ones; that is, that
authentication is checked if required and the code is
predicated upon it according to the design of the API.

2) For only those functions and stored procedures which
contain an execute primitive, such as the pl/pgsql
EXECUTE keyword or any DDL statements, that the
resulting operations are within the gamut of what is
intended by the application.

Both analyses are predicated on a complete threat model,
and therefore this does not provide an absolute guarantee
against security issues, but rather only guarantees that those
considered in the threat model are detectable. The latter anal-
ysis additionally requires, to preserve this detectability, that
the allowed execution be amenable to analysis; for example,
it should be as computationally simple as possible. Ideally
it should be simple enough to verify using inductive logic
or exhaustive enumeration, and in no case should it be more
complex than deterministic context-free.

It is still possible that a user might be able to compose
functions and SQL operations, for example by using one data
API function as a parameter to another, or by making queries
against the results of a table-valued function. While this causes
the database to perform additional computation on the user’s
behalf, this does not constitute a security threat with respect
to the data because the operations performed in this way are a
subset of those which could be performed client-side anyway.
This holds provided that general threats against the DBMS,
described in the following section, are addressed.

Additionally, without extension, this work does little to
prevent timing attacks and query composition attacks. These
are more general problems that are outside the scope of SQL
injection. However, it is possible that some cases of query
composition attacks could be defended against by defining
authorization rules using this work, where those authorization
rules are predicated upon a user’s previous queries.

Some authors have noted the potential for SQL injection
vulnerabilities in JWT processing, which is one of the major
attack surfaces relevant to JWT use [21]. These vulnerabilities
occur as a result of trusted, valid JWTs issued with SQL
injection payloads in some relevant field such as the audience
or the claims. Since this work treats the JWT as a data string in
transit and then the database parses it according to the JSON
specification, there is no potential for SQL injection; the code-
data boundary between application code and the JWT contents
is maintained.

A. PostgreSQL General Threats

The various means required to secure a PostgreSQL
database against privilege escalation are not within the scope
of this work, but will be discussed non-exhaustively in brief.

PostgreSQL implements a search path across several
schemae to bind symbols; if users are permitted to define
schema objects in a schema that precedes that of another
schema object in the search path, it is possible for malicious
users to rebind those schema objects when they are called by
a more privileged caller. This rebinding attack may be invoked
on operators or defined functions, for example, and could lead
to elevation of privilege that would in turn permit the control
described in this work to be bypassed.

Additionally, a user who is allowed to install extensions in
the database with the CREATE EXTENSION statement could
install an extension which performs operations that exceed the
scope of intended access. Though this requires the plugin code
to be present on the database server’s disk, there are several
strategies (including the large object API in PostgreSQL) to
cause arbitrary data to be written to disk.

Those permissions which are gated behind the
pg_execute_server_program permission also allow
the user to execute arbitrary programs on the database server,
which must also be avoided for the method described in this
work to be effective.

It is also imperative that the application user not be granted
permissions to read, write, or execute server-side files as
described in the COPY command, and that the application not
trust the standard output of the process handling the database
connection. In the latter case, COPY TO STDOUT could result
in response injection.

It is for these reasons that a user of the data API should
not be allowed to perform any operations except calling the
data API. Fortunately, PostgreSQL supports a default-deny
permission model that lends itself to this task.

VIII. CONCLUSION

This work has proposed replacing the diverse schemes
currently used to prevent SQL injection by creating a layer in
the database which implements a prescriptive API, including
authorization rules. This removes the responsibility for enforc-
ing authorization and access procedures from the application
entirely, so that even if an attacker can send requests directly to
the database using the application’s credentials, the attack will
yield no more access than the user already obtains by using



the application. The authorization rules become an atomic
part of the schema, eliminating the possibility for injection
attacks because the application is no longer trusted by the
database. The database, in turn, uses the recognizer pattern on
authorization rules to reject as invalid any unauthorized access
prior to side effects.

This categorically prevents confidentiality and integrity
attacks, and permits verification of the correctness of the
application’s data model using only the database schema.

Some extant applications could be retrofitted with this strat-
egy if the non-data components of the database queries they
make are a finite enumerable set (which they arguably should
be, as follows from [15]), and if the application’s authorization
rules can be evaluated by the database. To do so requires
significant engineering effort, but successful application of this
strategy yields improved encapsulation and permits developers
to dispense with other mitigations like input sanitization and
web application firewalls, at least in the context of SQL
injection.
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