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Abstract—Context-free grammars (CFGs) are widely used to
specify the syntax of programming languages. However, their
inherent complexity and lack of structural nesting information
make them less suitable for certain parsing and analysis tasks.
Visibly pushdown grammars (VPGs) address these limitations
by introducing explicit call, return, and plain symbols, enabling
efficient parsing and analysis of nested structures. Translating
practical CFGs into VPGs remains challenging, especially with
ambiguous constructs like the dangling-else issue, where the
order of call and return symbols must be carefully managed
to ensure correct parsing.

In this paper, we present C2VPG, a tool for automatically
translating practical CFGs into VPGs using a novel order-based
tagging method. Our approach introduces a sound algorithm
that automatically determines an order on return symbols and
constructs a tagger that assigns call, return, and plain tags to
terminals in a CFG based on this order. This method resolves
the tagging challenge posed by the dangling-else problem, where
return symbols could be optional in sentences. We evaluate our
approach on 396 real-world grammars from the ANTLR reposi-
tory, achieving a 61% success rate in converting CFGs into VPGs.
We discuss the challenges posed by practical grammar design
that prevent C2VPG’s translations. Our results demonstrate that
C2VPG is both practical and efficient, and could assist language
designers in creating more robust grammars.

Index Terms—context-free grammars; visibly pushdown gram-
mars

I. INTRODUCTION

Parsing is a fundamental component of computer systems,
with applications ranging from programming language com-
pilers to network protocol analyzers. Modern parsers must be
both efficient and secure, as they often process untrusted or
adversarial inputs in high-performance settings. While context-
free grammars (CFGs) are widely used to specify the syntax of
programming languages, they suffer from inherent limitations,
such as ambiguity and lack of explicit nesting structures, which
hinder their efficiency and suitability for certain parsing tasks.
As a result, the worst case complexity of parsing algorithms
based on CFGs is cubic time [1].

Visibly pushdown grammars (VPGs) [2] address these lim-
itations by introducing nesting structures into a grammar. In
particular, all terminals are tagged as call, return, and plain

symbols; call and return symbols are used to enclose nesting
structures (think of HTML open and close tags). For exam-
ple, we can tag the string "OPEN_TAG TEXT CLOSE_TAG"
as "<OPEN_TAG TEXT CLOSE_TAG>", where the angle
brackets indicate that "OPEN_TAG" is a call symbol and
"CLOSE_TAG" is a return symbol. This tagging of nesting
structures via call/return symbols enables linear-time parsing
even in the worst case [3], [4]. VPGs occupy a “sweet spot”
between the expressive power of CFGs and the efficiency
of regular grammars, making them particularly well-suited
for applications requiring both high performance and strong
security guarantees [3]–[7].

Since many languages already have their syntax specified
by CFGs, one approach of taking advantage of efficient and
secure VPG parsing is to convert CFGs to VPGs. However,
there are many challenges for translating practical CFGs
into VPGs, particularly in determining what call and return
symbols are. One such case is the well-known dangling-else
issue. For an example that will be discussed in detail in
Section III, in the following two sentences,

1 if x then if y then z
2 if x then if y then z else w

the terminals need to be tagged differently:

1 <if x then> <if y then> z
2 <if x then> <if y then z else> w

In the first, both occurrences of then are tagged as return
symbols that are matched with an if; however, in the second,
the second then is not tagged as a return symbol. This ex-
emplifies a challenge in CFG-to-VPG translation: the tagging
of then as a return symbol depends on whether else is
there, which is not allowed in VPGs. To resolve this issue, we
introduce an order-based tagging approach, where the order of
return symbols determines their pairing with call symbols.

In this paper, we present C2VPG, a novel approach for
automatically translating practical CFGs into VPGs using
order-based tagging. Our method introduces a sound algorithm



for constructing a tagger that assigns call, return, and plain
tags to terminals in a CFG, ensuring that the resulting grammar
is well-matched and can be efficiently parsed, while retaining
the semantics. Specifically, the algorithm:

1) Identifies recursion tuples in the CFG, representing re-
cursive structures that must be nested within call-return
pairs.

2) Constructs a tagger that enforces compatibility condi-
tions, ensuring that all recursion tuples are well-founded
and that each rule body is well-matched.

3) Uses an order mapping to tag return symbols based on
their context in a sentence, significantly extending the
translation capability.

We evaluate our approach on 396 real-world grammars
from the ANTLR repository, achieving a 61% success rate
in converting CFGs into VPGs. Our results demonstrate that
C2VPG is both practical and efficient, with most translations
completing in under a second. We also analyze the reasons for
translation failures and identify potential future extensions to
improve the success rate.

The contributions of this paper are as follows:
1) A sound algorithm for constructing efficient taggers that

translate CFGs into VPGs using order-based tagging.
2) A comprehensive evaluation of the algorithm on real-

world grammars, demonstrating its practicality and ef-
ficiency.

3) Insights into the challenges of translating practical CFGs
into VPGs and potential directions for future work.

The rest of the paper is organized as follows. Section II
provides background on VPGs and practical CFGs. Section III
presents a motivating example and introduces the problem of
translating CFGs into VPGs. Section IV presents our algorithm
for constructing taggers and converting CFGs into VPGs.
Section V evaluates the algorithm on real-world grammars,
Section VII discusses related work, and Section VIII concludes
the paper.

II. BACKGROUND

A. Visibly Pushdown Grammars

VPGs [2] have been used in program analysis, XML pro-
cessing, and other fields. Compared with CFGs, VPGs enjoy
many good properties. Since languages of VPGs are a subset
of deterministic context-free languages, it is always possible
to build a deterministic PDA from a VPG. The terminals in
a VPG are partitioned into three kinds, and the stack action
associated with an input symbol is fully determined by the
kind of the symbol: an action of pushing to the stack is
always performed for a call symbol, an action of popping
from the stack is always performed for a return symbol, and
no stack action is performed for a plain symbol. Further-
more, languages of VPGs enjoy appealing theoretical closure
properties; e.g., the set of visibly pushdown languages is
closed under intersection, concatenation, and complement [2].
VPGs also enable the building of linear-time parsers, and
VPG parsers are amenable to formal verification [3], [4]. The

expressive power of VPG is between regular grammars and
CFGs, and is sufficient for describing the syntax of many
practical languages, such as JSON, XML, and HTML, with
appropriately defined call/return symbols.1

We represent a CFG G as a tuple (V,Σ, P, L0), where V is
the set of nonterminals, Σ is the set of terminals, P is the set of
production rules, and L0 ∈ V is the start symbol. For a VPG,
the alphabet Σ is partitioned into three sets: Σplain, Σcall, Σret,
which contain plain, call, and return symbols, respectively.
Notation-wise, a terminal in Σcall is tagged with ‹ on the
left, and a terminal in Σret is tagged with › on the right. For
example, ‹a is a call symbol in Σcall, and b› is a return symbol
in Σret.

In this paper, we only consider well-matched VPGs, which
generate only well-matched strings, where a call symbol is
always matched with a return symbol.

Definition II.1 (Well-matched VPGs). A grammar G =
(V,Σ, P, L0) is a well-matched VPG with respect to the
partitioning Σ = Σplain ∪ Σcall ∪ Σret, if every production rule
in P is in one of the following forms.

1) L→ ϵ, where ϵ stands for the empty string;
2) L→ cL1, where c ∈ Σplain;
3) L→ ‹aL1b›L2, where ‹a ∈ Σcall and b› ∈ Σret.

Note that in L → cL1 terminal c must be a plain symbol,
and in L → ‹aL1b›L2 a call symbol must be matched with
a return symbol; these requirements ensure that any derived
string must be well-matched.

The following is an example of a well-matched VPG, which
is refactored from a grammar for XML.

element→
OpenTag content CloseTag Empty | SingleTag Empty

In this example, nonterminals start with a lowercase char-
acter, such as “element”, and terminals start with an upper-
case character, such as “OpenTag”. The special nonterminal
“Empty” has a single rule that produces the empty string. The
grammar shows a typical usage of VPGs to model a hierar-
chically nested matching structure of XML texts: “OpenTag”
is matched with “CloseTag”, and “content” nested in between
can be “element” itself (not shown in the above snippet) and
forms an inner hierarchy.

The notion of a derivation in VPGs is the same as the
one in CFGs. We write w → w′ to mean a single derivation
step according to a grammar, where w and w′ are strings of
terminals or nonterminals. We write L→∗ w to mean that w
can be derived from L via a sequence of derivation steps.

B. Context-Free Grammars in Practice

Besides grammars in the EBNF format, most practical
parser generator, such as Bison, Yacc, and ANTLR, support
additional features, such as regular operators, semantic actions,
and annotations [8]–[11]. In this work, we ignore the semantic

1For instance, the XML grammar is a VPG if a whole XML tag is treated
as a terminal symbol; this requires a lexer that returns XML tags as tokens.



actions and other annotations, and only consider the pure
context-free grammars. In addition, a practical grammar often
contains two parts: a lexer grammar that specifies how to
convert raw texts (character stream) into a token stream, and,
based on it, a parser grammar as a context-free grammar,
where each terminal is really a token. In this work, we only
consider the parser grammar.

III. A MOTIVATING EXAMPLE

Most practical formal grammars are written as CFGs, and
any CFG can be converted into a VPG through appropriate
tagging [2]2. In some cases, this tagging is straightforward.
For example, consider the following grammar:

L→ aLb | c.

Here, terminals a, b, and c can be naturally tagged as call, re-
turn, and plain symbols, respectively, converting the grammar
into a VPG:

L→ ‹aLb›E | c, E → ϵ.

The tagging process is not always apparent. Consider the
following CFG:

L→ cLc | c,

where L is a nonterminal and c is a terminal. In this case, c
functions as a call, return, and plain symbol simultaneously.
Multiple translations to a VPG are possible. One can even
rewrite the grammar as a regular grammar3:

L→ ccL | c.

Nevertheless, this transformation loses the original nesting
structure of the grammar. Alternatively, we can tag each
occurrence of c based on its position:

L→ ‹cLc› | c.

Here, ‹c, c›, and c are distinct terminals, differentiated by their
tagging. To parse a sentence, such as ccc, a preprocessor called
tagger assigns the appropriate tags to each terminal, converting
ccc into ‹ccc›. This tagged sentence is then parsed according
to the VPG L→ ‹cLc› | c, producing a parse tree, from which
tagging information can be removed to reconstruct the original
parse tree.

We define translations from a CFG to a VPG as follows:

Definition III.1 (Translations from a CFG to a VPG). A
translation from a CFG G = (Σ, V, P, L0) to a VPG
G′ = (Σ′, V ′, P ′, L′

0) is a tuple (G,G′, f), where:
• Σ′ ⊆ Σ ∪ {‹i | i ∈ Σ} ∪ {i› | i ∈ Σ}, meaning that each

terminal in Σ′ is either a terminal from Σ, or a tagged
version of a terminal as a call or return symbol.

• For each string s ∈ (Σ ∪ V )∗ such that L0 →∗ s, the
tagging function f maps s to a string ŝ ∈ (Σ′ ∪ V )∗,
such that s and ŝ are of the same length, and for each
position i ∈ [1..|s|]:

2Note that the tagging maps a CFG to a VPG with a new set of terminals.
CFGs are still more expressive than VPGs when they share the same terminals.

3More strictly, the regular grammar is L → cL1 | c, L1 → cL.

1) if s[i] ∈ V , then ŝ[i] = s[i];
2) if s[i] ∈ Σ, then ŝ[i] ∈ {s[i], ‹s[i], s[i]›}.

• Ignoring the tagging, the language of G is equivalent to
that of G′, i.e.:

{f(s) | L0 →∗ s, s ∈ Σ∗} = {ŝ | L′
0 →∗ ŝ and ŝ ∈ Σ′∗}

While always possible, finding translations with efficient
taggers remains an open problem. However, in practice, such
translations are often intuitive, and the resulting tagger tends
to operate efficiently.

We introduce a general rule for tagging a CFG based on
its production rules, with the objective of deriving an efficient
tagger. This approach is later formalized as a sound algorithm
in the following section.

In short, the general rule requires finding a tagger that
ensures (1) each dependency loop in the CFG is well-founded,
and (2) each CFG rule under tagging is well-matched. [3]
demonstrates that such a tagger transforms the CFG into a
tagged CFG that is always convertible to a VPG.

We formalize the related concepts as follows.

Definition III.2 (Dependency graph). The dependency graph
of a grammar G = (V,Σ, P, L0) is (V,EG), where

EG = {(L,L′, (s1, s2)) |
s1, s2 ∈ (Σ ∪ V )∗, (L→ s1L

′s2) ∈ P}.

Note that an edge from L to L′ is labeled with a pair of strings.

Definition III.3 (Dependency loop). Let G = (V,Σ, P, L0) be
a grammar with its associated dependency graph (V,EG). A
dependency loop is defined as a loop present in the dependency
graph such that at least one edge in the loop is labeled with
(s1, s2), where s2 can derive a nonempty string (i.e., s2 →∗ w
for some nonempty string w). In other words, there exists a
set of rules

Li → αiLi+1βi, i ∈ [1..n]

where L1, L2, . . . , Ln+1 are nonterminals, L1 = Ln+1, and
αi, βi are strings of terminals and/or nonterminals (possibly
empty). This sequence of rules rewrites L1 into

α1α2 . . . αnL1βnβn−1 . . . β1,

which has a recursion involving L1.

Definition III.4 (Well-Founded Dependency Loop). A depen-
dency loop is defined as well-founded under a tagger f , if it
contains an edge (L,L′, (s1, s2)), where the tagged sequence
f(s1s2) is well-matched, and there exists a call symbol in
f(s1) that is paired with a return symbol in f(s2).

Now we demonstrate the general rule by a representative
example of resolving the well-known “dangling-else” problem
in CFGs. The dangling-else problem introduces ambiguity into
a CFG. Consider the following example, which specifies the
syntax of if-expressions:



if_expr : IF if_expr THEN if_expr
| IF if_expr THEN if_expr ELSE

if_expr
| variable ;

variable: x | y | z | w ;

In this grammar, IF, THEN, ELSE, x, y, z, and w are
terminals, while if_expr and variable are nonterminals.

Notice that there are three dependency loops in the CFG:
from the head nonterminal if_expr to the first if_expr
in the first rule, and to the first and second if_expr in the
second rule. Below, the related nonterminals are surrounded
by curly brackets:

{if_expr}: IF {if_expr} THEN if_expr
| IF {if_expr} THEN {if_expr}

ELSE if_expr

Based on the general rule, we now try to tag certain termi-
nals to make all dependency loops well-founded. Naturally, IF
is tagged as a call symbol. The challenge is deciding whether
THEN or ELSE should be tagged as the return symbol: if we
tagged THEN as the return symbol, if_expr in the second
rule would not be properly nested within call-return pairs; if
we tagged ELSE as the return symbol instead, if_expr in
the first rule would not be nested within call-return pairs.

Instead, we need to tag the terminals in a rule specific way.
Below, we tag THEN as a return symbol in the first rule, and
ELSE as a return symbol in the second rule, so that all loops
are nested in call-return pairs.

if_expr : <IF if_expr THEN> if_expr
| <IF if_expr THEN if_expr

ELSE> if_expr
| variable ;

variable: x | y | z | w ;

Such tagging introduces a gap between a parser that takes
tagged strings and an input that is untagged, since a terminal
needs to be tagged based on their contexts in sentences before
being sent to the parser. Consider the following two sentences:

1. IF x THEN IF y THEN z
2. IF x THEN IF y THEN z ELSE w

The tagger should tag the terminals as follows:

1. <IF x THEN> <IF y then> z
2. <IF x THEN> <IF y THEN z else> w

For practical usage, it is important to make sure the tagger is
efficient. In the above example, our produced tagger operates
in linear time relative to the number of tokens, making it highly
efficient. The tagger works as follows: Given an input string,
the tagger maintains an initially empty stack. As it reads each
token sequentially, it pushes IF and THEN onto the stack.
Upon encountering ELSE, the tagger removes the top of the
stack (which must be THEN) and pairs the ELSE with the IF
at the top of the stack, and removes the IF. After processing
all tokens, any remaining IF tokens on the stack are paired
with the subsequent THEN tokens on the stack.

Algorithm 1: higherPri(b1›, b2›,M, ‹a): Returns
true if b1› has higher priority than b2›.

Input: Return symbols b1›, b2›, order mapping M ,
and call symbol ‹a.

1 Let i1 be the index of b1› in M [‹a];
2 Let i2 be the index of b2› in M [‹a];
3 return true if i1 > i2, otherwise false;

In general, we found that a significant portion of practical
grammars can be successfully converted into VPGs with
efficient taggers. In the next section, we propose a sound
algorithm for automatically finding efficient taggers in a CFG.

IV. APPROACH

A. A Sound Algorithm for Finding Efficient Taggers

In this section, we propose an algorithm that, given a
context-free grammar (CFG), automatically constructs a tagger
that accepts a string and tags each terminal as a call, return,
or plain symbol; when a symbol is tagged as a plain symbol,
we also say that it is untagged since the tagging of call and
return symbols is sufficient to determine that the rest are plain
symbols. The algorithm is sound, meaning that if it returns a
tagger, the tagger runs in linear time with respect to the length
of the input string. However, the algorithm is not complete
and may not return a tagger because we impose additional
restrictions on the returned tagger for efficiency reasons.
Future work could make our algorithm more complete.

B. Tagger Definition

Definition IV.1 (Tagger). At a high level, a tagger in this
section is represented as a tuple (Σcall,Σret,M), where:

• Σcall is a set of terminals tagged as call symbols,
• Σret is a set of terminals that can potentially be tagged

as return symbols, and
• M is a mapping from a call symbol ‹a to an ordered list

of return symbols in Σret that can be potentially paired
with ‹a:

M : Σcall → Σ+
ret

Note that M(‹a) returns a list of return symbols of
increasing priority.

Using a tagger, we can describe how to tag a string, as
shown in Algorithm 2. The function attempts to match call
symbols in the stack with return symbols in the sequence,
ensuring the pairs follow the given order: if a return symbol
is followed by another return symbol of higher priority, the
first one is removed from the stack. If a return symbol appears
without a corresponding call symbol in the stack, the function
returns false. The algorithm also ensures that any remaining
symbols in the stack are well-matched with return symbols.
This procedure runs in linear time since each symbol is
processed at most twice (once when added to the stack and
once when removed).



Algorithm 2: CheckAndTag(Σcall,Σret,M, s): Checks well-matching of a string and tags the string.
Input: Call symbols Σcall, return symbols Σret, order mapping M , and string s.
Output: A tagged version of s, if s is well-matched; otherwise None.

1 Let stack T ← ⊥;
// Store the call symbols in Tcall for quick retrieval.

2 Let call symbol stack Tcall ← ⊥;
3 Initialize location mapping N as N [i] = call for each s[i] if s[i] ∈ Σcall.
4 foreach i-th symbol x in sequence s do
5 if x ∈ Σcall then push (i, x) onto T and Tcall;
6 else if x ∈ Σret then
7 while T ̸= ⊥ and top of T is in Σret do
8 Let (j,prev_return)← top of T ;
9 if Tcall ̸= ⊥ then

10 Let (_,top_call)← top of Tcall;
11 if higherPri(x,prev_return,M,top_call) then

// Remove smaller return symbols on stack.
12 Remove top of T ;
13 end
14 else

// Try to pair prev_return with the stack top.
15 if T ̸= ⊥ then
16 Remove tops of T and Tcall;
17 if prev_return ∈M [top_call] then N [j]← return;
18 else return None;

// The new top maybe a smaller return symbol, so continue the
while-loop.

19 end
20 else return None;
21 end
22 end
23 else return None;
24 end
25 Push (i, x) onto T ;
26 end
27 end
28 N ′ ← CheckStack(Σcall,Σret,M,N, T );
29 if N ′ is not None then return s tagged based on location mapping N ′;
30 else return None;

C. Recursion Tuples and Compatibility of Taggers

To understand how to find a tagger compatible with a CFG,
we first define the concept of recursion tuples, representing
the recursive structures within a CFG.

Definition IV.2 (Recursion Tuples). A recursion tuple for
a given CFG is a tuple (L, s1, s2), such that there exists a
dependency loop that rewrites L into s1Ls2.

Definition IV.3 (Compatible Taggers). We call a tagger
(Σcall,Σret,M) compatible with a CFG, if the following con-
ditions hold:

1) For each recursion tuple (L, s1, s2) in the CFG, s1s2 is
well-matched, i.e., CheckAndTag(Σcall,Σret,M, s1s2)
returns not None, but the sequence s2 alone is not well-
matched, i.e., CheckAndTag(Σcall,Σret,M, s2) returns

None. The second condition ensures that s1 contains at
least one call symbol that is paired with a return symbol
in s2, so that recursion is nested within a call-return pair.

2) For each rule L → s, rule body s is well-matched:
CheckAndTag(Σcall,Σret,M, s).

We can use a compatible tagger (Σcall,Σret,M) to tag the
CFG by mapping each rule L → s of the CFG to a new
rule L → CheckAndTag(Σcall,Σret,M, s). The resulting
grammar is called a tagged CFG, a notion introduced in [4],
which also explains how to convert a tagged CFG into a VPG.
Therefore, in this paper, we only focus on the algorithm for
finding a compatible tagger.



Algorithm 3: CheckStack(Σcall,Σret,M,N, T ): Checks well-matching of a stack.
Input: Call symbols Σcall, return symbols Σret, order mapping M , location mapping N , stack T .
Output: N updated with locations in T , if T is well-matched, otherwise None.

1 T ′ ← ⊥;
2 while T ̸= ⊥ do
3 Let (i, x)← top of T ;
4 if x ∈ Σret then push (i, x) to T ′;
5 else if T ′ ̸= ⊥ then
6 Let (j, y)← top of T ′;
7 if y ∈M [x] then
8 N [j]← return;
9 Remove top of T ′;

10 end
11 else return None;
12 end
13 else return None;
14 end
15 if T ′ ̸= ⊥ then return N ;
16 else return None;

Algorithm 4: FindCompatibleTagger(V,R,Q)

Input: Nonterminal set V , recursion tuples R, and rules bodies Q.
Output: Sets of call and return symbols, and order mapping M , if a compatible tagger exists; otherwise None.

1 Let Σcall ← {}, Σret ← {};
2 Let M ← a map from each call symbol to an empty list of return symbols;
3 if Backtrack(V,R,Q,Σcall,Σret,M, 0) then return (Σcall,Σret,M);
4 else return None;

D. Algorithm for Finding a Compatible Tagger

We present an algorithm that searches for a compatible
tagger for a given CFG. The main goal is to identify sets of call
and return symbols and establish an ordering among the return
symbols, ensuring that for each recursion tuple (L, s1, s2) of
the CFG, sequence s1s2 is well-matched under tagging. The
algorithm proceeds recursively through the recursion tuples,
checking for well-matched sequences and applying corrective
actions if mismatches are detected.

The key steps of the algorithm are as follows. For each
recursion tuple, if the sequence of symbols is not well-
matched, the following three extensions of the tagger are
attempted to make the sequence well-matched. If none of the
approaches succeeds, the algorithm returns None, indicating
that no tagger can be found.

1) Extend Call Symbols: The algorithm attempts to extend
the set of call symbols by identifying new candidates
from the left side of the recursion tuple.

2) Pair Calls with Returns: The algorithm attempts to
add new call symbols and pair them with existing return
symbols.

3) Extend Return Order: The algorithm attempts to add a
new return symbol to enlarge the order list of an existing
call symbol.

The main algorithm (Algorithm 4) employs a backtracking
mechanism to explore potential call and return symbols, ensur-
ing that all recursion tuples in the CFG meet the well-matching
conditions. This backtracking process is encapsulated in the
BacktrackDFS function (Algorithm 5), which systemat-
ically tries different combinations of call and return sym-
bols. To streamline the exploration, the backtracking process
is supported by specialized subroutines—AddCallSymbol,
PairCallsWithReturns, and ExtendOrder—outlined
in Algorithms 6, 7, and 8, respectively.

Theorem IV.1 (Correctness of Compatible Tagger Algorithm).
Given a CFG G = (Σ, V, P, L0), let Q be the set of all rule
bodies in P . If FindCompatibleTagger(V,R,Q) returns
a tagger (Σcall,Σret,M), then the tagged CFG G′ = {L →
CheckAndTag(Σcall,Σret,M, s) | (L → s) ∈ P} can be
converted to a visibly pushdown grammar (VPG), and the
language of G′, when ignoring the tagging, is equivalent to
the language of the original CFG G.

Proof. As guaranteed by Line 4 of Algorithm 5, all depen-
dency loops in the tagged CFG G′ are well-founded, and each
rule body of G′ is well-matched. As discussed in [4], such a
tagged CFG can be converted into a VPG.

Regarding the equivalence of the two languages, notice
that CheckAndTag(−,−,−, s) simply provides additional



Algorithm 5: Backtrack(V,R,Q,Σcall,Σret,M, i)

Input: Nonterminal set V , recursion tuples R, rule bodies Q, call symbols Σcall, return symbols Σret, mapping M , and
index of current recursion tuple i to explore.

Output: true, if a compatible tagger exists; otherwise false.
1 if i == |R| then return true ;
2 Let (L, s1, s2)← R[i] // Extract the current recursion tuple.
3 Let sequence s← s1s2;
4 if CheckAndTag(Σcall,Σret,M, s) and not CheckAndTag(Σcall,Σret,M, s2) and CheckAndTag(Σcall,Σret,M, q)

for all q in Q then
5 return Backtrack(V,R,Σcall,Σret,M, i+ 1)
6 end
// Step 1: Try adding a new call symbol from s1.

7 if AddCallSymbol(V, s1,Σcall,Σret,M) then return true ;
// Step 2: Try pairing calls with returns in s1 and s2.

8 if PairCallsWithReturns(V, s1, s2,Σcall,Σret,M) then return true ;
// Step 3: Try extending the order of return symbols.

9 if ExtendOrder(V, s1, s2,Σcall,Σret,M) then return true ;
10 return false

Algorithm 6: AddCallSymbol(V, s1,Σcall,Σret,M)

Input: Nonterminal set V , left alternative s1, call symbols Σcall, return symbols Σret, and mapping M .
Output: true, if a new call symbol can be added and matched successfully; otherwise false.

1 foreach call_candidate ∈ s1 do
2 if call_candidate /∈ V and call_candidate /∈ Σcall then
3 Add call_candidate to Σcall;
4 foreach return_candidate ∈ Σret do
5 M [call_candidate]← [return_candidate];
6 if Backtrack(V,R,Σcall,Σret,M, 0) then
7 return true
8 end
9 end

10 Remove call_candidate from Σcall;
11 end
12 end
13 return false;

information to each symbol in s. Therefore, when the tagging
is ignored, the language of G′ is identical to that of the original
CFG G.

In conclusion, Algorithm 4 is sound, providing a method
for finding a compatible tagger for a given CFG. The tagger
produced by the algorithm operates efficiently, ensuring linear-
time performance with respect to the length of the input se-
quence. This makes the approach practical for large grammars
and real-world applications.

V. EVALUATION

We implemented the tagging-inference algorithm in Python,
and the source code is publicly available [12]. To evaluate the
effectiveness of our approach, we applied the algorithm to all
396 grammars from the ANTLR repository [13]. The results
are summarized in Table I. The algorithm successfully gener-
ated efficient taggers for 241 grammars, representing 61% of

the total. These grammars were automatically converted into
visibly pushdown grammars (VPGs). A time limit of 2 hours
was imposed on the analysis, and 5 grammars exceeded this
limit.

Table II presents the performance of the tagging-inference
algorithm on the ANTLR grammars. The runtimes reflect
the total time from reading an ANTLR grammar to con-
structing a tagger. The results indicate that for grammars that
successfully convert, the algorithm performs efficiently, with
most translations completing in under a second. However,
for grammars that fail to convert, particularly larger or more
complex ones, the backtracking nature of the algorithm can
result in significantly longer runtimes.

Figure 1 shows the success rates of the tagging-inference
algorithm across different grammar file sizes. The success rate
generally decreases as file size increases. For smaller grammar
files (<3KB), the success rate remains high; however, with



Algorithm 7: PairCallsWithReturns(V, s1, s2,Σcall,Σret,M)

Input: Nonterminal set V , left alternative s1, right alternative s2, call symbols Σcall, return symbols Σret, and mapping
M .

Output: true, if new call-return pairs can be matched successfully; otherwise false.
1 foreach call_candidate ∈ s1 do
2 if call_candidate /∈ V and call_candidate /∈ Σcall then
3 foreach return_candidate ∈ s2 do
4 if return_candidate /∈ V and return_candidate /∈ Σret then
5 Add call_candidate to Σcall;
6 Add return_candidate to Σret;
7 M [call_candidate]← [return_candidate];
8 if Backtrack(V,R,Σcall,Σret,M, 0) then return true ;
9 Remove return_candidate from M [call_candidate];

10 Remove call_candidate from Σcall;
11 Remove return_candidate from Σret;
12 end
13 end
14 end
15 end
16 return false;

Algorithm 8: ExtendOrder(V, s1, s2,Σcall,Σret,M)

Input: Nonterminal set V , left alternative s1, right alternative s2, call symbols Σcall, return symbols Σret, and mapping
M .

Output: true, if the order of return symbols can be extended successfully; otherwise false.
1 foreach call_candidate ∈ s1 do
2 if call_candidate ∈ Σcall then
3 Let return_symbol← last(M [call_candidate]);
4 foreach return_candidate ∈ s2 do
5 if return_candidate /∈ V and return_candidate /∈ Σret ∪ Σcall then
6 Add return_candidate to Σret;
7 Append return_candidate to M [call_candidate];
8 if Backtrack(V,R,Σcall,Σret,M, 0) then return true ;
9 Remove return_candidate from Σret;

10 Remove return_candidate from M [call_candidate];
11 end
12 end
13 end
14 end
15 return false;

larger files, the algorithm faces increasing difficulty in finding
a suitable tagger, due to the complex grammar structures.

VI. DISCUSSION

We discuss some representative reasons why the tagging-
inference algorithm fails to identify a suitable tagger.

1) Return symbols containing multiple tokens. The algo-
rithm is designed to tag a single ANTLR token as
a call or return symbol. However, return symbols can
be composed of separate tokens. For example, in the
Ada2005 grammar, IF is paired with END IF, where
IF and END are distinct tokens.

2) Call symbols embedded in nonterminals. Some grammars
may group call symbols within a nonterminal. For exam-
ple, consider the following rule in Modelica:

1 class_definition
2 : ('encapsulated')? class_prefixes

... 'end' ;

Here, the nonterminal class_prefixes specifies a
group of call symbols that can be paired with the re-
turn symbol 'end', such as 'class', 'model', and
'record'—all of which intuitively signal the beginning
of a class definition.



TABLE I
THE STATISTICS OF ALL 396 ANALYZED ANTLR GRAMMARS.

Type Number Ratio

Succeed 241 61%
Failed 150 38%
Out of Time (2 hours) 5 1%

TABLE II
THE RUNNING TIME OF THE TAGGING-INFERENCE FUNCTION ON

ANALYZABLE ANTLR GRAMMARS.

Type Number Min (s) Max (s) Average (s) Median (s)

Succeed 241 0.77 0.00 162.33 0.01
Failed 150 73.54 0.01 4165.08 0.10

<1KB 1-2KB 2-3KB 3-5KB 5-10KB >10KB
File Size Category (KB)
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Fig. 1. Success rate of the tagging-inference algorithm by grammar file size, with the number of grammars in each category displayed above the bars.

3) Hard-to-detect regular subgrammars. Given a CFG G =
(V,Σ, P, L0) and a nonterminal L ∈ V , we define the
subgrammar of L as all rules in P that are reachable from
L, with L as the start nonterminal. Some subgrammars
can be converted to regular grammars, but detecting them
is challenging. For example, the asmMASM grammar con-
tains a subgrammar for the nonterminal expression,
which includes the following rules:

1 expression
2 : number 'DUP' expression ('+'

number 'DUP' expression)*
3 | number ;

There is no suitable tagging to make the first rule well-
founded. However, the subgrammar has an equivalent
regular expression:

1 (number 'DUP')* number ('+' (number
'DUP')* number)*

Unfortunately, detecting whether a grammar can be con-
verted to a regular grammar is an undecidable problem.
Moreover, converting a CFG to a regular grammar, even
when possible, can often disrupt the original structure of
the CFG and undermine the intentions of the language
designers.

While C2VPG achieves a high success rate for smaller-
sized grammars, it could be extended to improve success rates
by broadening the forms of call and return symbols, such as
including token sequences, or nonterminals that can be defined

using regular expressions over tokens. Such extensions would
come at the cost of increased running time. We leave these
enhancements for future work.

VII. RELATED WORK

Jia et al. [14] proposed V-Star, a tool that inferred program
input grammars as VPGs from black-box programs. Unlike
V-Star, which requires inferring a tokenizer and works on
program inputs, C2VPG operates directly on existing CFGs
and focuses on parser rules in ANTLR grammars. Under
similar problem setting as V-Star, Michaliszyn et al. [15]
studied the problem of active learning deterministic visibly
pushdown automata.

Bren [16] also tried to convert CFGs to VPGs. However,
their approach is based on an enumeration of all possible
taggings. In contrast, C2VPG uses a more efficient algorithm
that constructs a tagger based on recursion tuples, and extends
the ability of the tagger with ordering.

VIII. CONCLUSION

In this paper, we present C2VPG, a novel approach for
automatically translating practical CFGs into VPGs using
order-based tagging. Our method introduces a sound algorithm
for constructing a tagger that assigns call, return, and plain tags
to terminals in a CFG, ensuring that the resulting grammar
is well-matched and can be efficiently parsed. Still, different
language features bring challenges to the tagging-inference
algorithm, and we discuss some representative reasons for
translation failures. We evaluate our approach on 396 real-
world grammars from the ANTLR repository, achieving a



61% success rate in converting CFGs into VPGs. Our results
demonstrate that C2VPG is both practical and efficient, paving
the way for broader adoption of VPGs in parsing and analysis
tasks.
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