
C2VPG:
Translating Practical Context-Free Grammars

into Visibly Pushdown Grammars
by Order-Based Tagging

Xiaodong Jia and Gang Tan

The Pennsylvania State University
LangSec 2025

The Importance of Parsing

Parsing is essential in computer systems:
• High-assurance parsers are vital for

security in web applications.
• High-performance parsers are required in

web browsers and network routers.
• Inefficiency is a problem:

• Denial of Service via Algorithmic Complexity
Attacks. USENIX Security ’03

• REVEALER: Detecting and Exploiting Regular
Expression Denial-of-Service Vulnerabilities.
S&P ’21

2

Motivation

• Parsers for Context-Free Grammars (CFGs) have efficiency limitations.
• E.g., CYK Parser runs in 𝑂(𝑠 3).

• LL(𝑘) and LR(𝑘) parsers place restrictions on what CFGs can be
accepted.
• A burden to refactor the grammar.

• Visibly Pushdown Grammars (VPGs) for parsing:
• Expressive: stronger than regular grammars but weaker than CFGs
• Secure: formally verified parser generator
• Efficient: Linear time parsing
• Easy to use

• Jia et al. (OOPSLA’21, TOPLAS’23): A Derivative-Based Parser Generator for Visibly
Pushdown Grammars

• Jia et al. (PLDI’24): V-Star: Learning Visibly Pushdown Grammars from Program Inputs

3

Background: Visibly Pushdown Grammars

A Visibly Pushdown Grammar (VPG) is a CFG 𝐺 = 𝑉, Σ, 𝑃, 𝐿0 , where
• The set of terminals Σ is a disjoint union of call, plain and return symbols:

Σ = Σcall ∪ Σplain ∪ Σret

• And each rule in 𝑃 has only three forms:
1. The epsilon rule 𝐿 → 𝜖
2. The linear rule 𝐿 → 𝑐𝐿′, where 𝑐 ∈ Σplain

3. The matching rule 𝐿 → 〈𝑎𝐿1𝑏〉𝐿2

where 𝐿 ∈ 𝑉, 𝑐 is a plain symbol, 〈𝑎 is a call symbol and 𝑏〉 is a return
symbol.

The first two forms describe the (right) regular grammar.
The third form introduces hierarchically nested matching of symbols.

4

Background: Model XMLs as VPGs

xml -> <OpenTag xml CloseTag> xml | TEXT xml | 𝜖

<<p> </p>>

Hello <<p> </p>>

World

<OpenTag

TEXT <OpenTag CloseTag>

TEXT

CloseTag>

Raw input: … <p>Hello<p>World</p></p> …

Tokenizer and Tagger

=

Tagged token stream Tagged token stream
5

Tagged CFGs: CFGs with tagging information.
• Tag terminals as call/plain/return.
• Mark call and return symbols by operators < and >.
• Nest each non-tail recursion within paired call and return symbol.

Tagged CFG for JSON

expr : digits '+' expr
 | digits ;
digits : [0-9]+ ;

Example Tail Recursion

Background: Model CFGs as VPGs

6

Tagged CFG for XML

Tagged CFGs: CFGs with tagging information.
• Tag terminals as call/plain/return.
• Mark call and return symbols by operators < and >.
• Nest each non-tail recursion within paired call and return symbol.

Background: Model CFGs as VPGs

7

Tagging Function

• Tagging function 𝑓 maps a context-free language to a new
language:

𝑓: Σ∗ → ‹𝑖, 𝑖, 𝑖› ∣ 𝑖 ∈ Σ∗ = {𝑖, 𝑖, 𝑖 ∣ 𝑖 ∈ Σ∗}

• For example:
 𝑓({“a”:[1,2,[3]]}) = ‹{“a”: ‹[1,2, ‹[3] ›] ›} ›
 = {“a”:[1,2,[3]]}

• Observation: 𝑓 can tag the same terminal differently, e.g.:
𝑓 𝑐𝑐𝑐𝑐𝑐 = ‹𝑐‹𝑐𝑐𝑐›𝑐› = 𝑐𝑐𝑐𝑐𝑐

8

Tagging Function

• So, consider the CFG
𝐺: 𝐿 → 𝑐𝐿𝑐 ∣ 𝑐

• We can convert it into a VPG by tagging 𝑓:
𝐺′: 𝐿 → 𝑐𝐿𝑐 ∣ 𝑐

• To parse string 𝑠 = 𝑐𝑐𝑐𝑐𝑐:
• Using 𝑓 to convert 𝑠 to 𝑠′ = 𝑐𝑐𝑐𝑐𝑐

• Parse 𝑠′ using VPG 𝐺′ and get parse tree:

𝐿

𝐿𝑐 𝑐

𝐿𝑐 𝑐

𝑐

𝐿

𝐿𝑐 𝑐

𝐿𝑐 𝑐

𝑐

3. Remove the tagging in the VPG
parse tree to get the CFG parse tree9

Tagging Function

Any CFG can be “converted” into a VPG by a tagging function.
(VPGs are weaker than CFGs, but the VPG above is on a new
terminal set.)
The challenge is to find an efficient tagging function.

10

Tagging Function

So, consider the CFG
𝐺: 𝐿 → 𝑐𝐿𝑐 ∣ 𝑐

We can convert it into a VPG by a tagging 𝑓:
𝐺′: 𝐿 → ‹𝑐𝐿𝑐› ∣ 𝑐

To parse string 𝑠 = 𝑐𝑐𝑐𝑐𝑐:
1. Using 𝑓 to convert 𝑠 to 𝑠′ = 𝑐𝑐𝑐𝑐𝑐

How to implement 𝑓?
One can see that 𝑓 is quite flexible—it can be any function.
Caveat: The complexity of parsing CFG is shifted to 𝑓.

11

C2VPG: Order-Based Tagging

• The “dangling-else” challenge from practical grammars:
 if x then if y then z

 if x then if y then z else w

• How to tag the CFG?
 if_expr -> IF if_expr THEN if_expr (ELSE if_expr)?

 | [a-z]

12

C2VPG: Order-Based Tagging

• How to tag the CFG? Two plausible ways:
 if_expr -> IF if_expr THEN if_expr (ELSE if_expr)?

 if_expr -> IF if_expr THEN if_expr (ELSE if_expr)?

• Neither will work. Instead, tag based on context:
 if_expr -> IF if_expr THEN if_expr

 | IF if_expr THEN if_expr ELSE if_expr

13

C2VPG: Order-Based Tagging
if_expr -> IF if_expr THEN if_expr

 | IF if_expr THEN if_expr ELSE if_expr

 | [a-z]

There is an order 𝑀 on the terminals of return symbols:
𝑀: THEN < ELSE

14

Construct efficient tagging function 𝑓 with order 𝑀 using a stack. For string:
if x then y else z

Push each terminal to the stack, one by one (omitting plain symbols):
[IF]
[IF, THEN] // If the string ends here, IF is paired with THEN
[IF, ELSE] // Removes THEN because THEN < ELSE
 // So, IF is paired with ELSE

C2VPG: Order-Based Tagging

How to find such order 𝑀? C2VPG has two steps:
1. Build recursion tuple 𝑥, 𝑦 , where call must be in string 𝑥, and
return must be in string 𝑦. E.g., for CFG:

15

if_expr -> IF if_expr THEN if_expr
 | IF if_expr THEN if_expr ELSE if_expr
 | [a-z]

The recursion tuples are:
1. (𝑥1, 𝑦1) = (IF, THEN if_expr)
2. (𝑥2, 𝑦2) = (IF if_expr THEN, ELSE if_expr)
Call symbol must be in 𝑥1 =(IF) and 𝑥2 = (IF if_expr THEN), and return symbol
must be in 𝑦1 = (THEN if_expr) and 𝑦2 = (THEN, ELSE if_expr)

C2VPG: Order-Based Tagging

16

How to find such order 𝑀? C2VPG has two steps:
2. Backtrack all possible orderings in recursion tuples.
• From (𝑥1, 𝑦1) = (IF, THEN if_expr), select (IF,THEN)
• Check if all recursion tuples have call-return pair in 𝑥 and 𝑦:

• For (𝑥2, 𝑦2) = (IF if_expr THEN, ELSE if_expr)
• Must select a return; select ELSE

• But IF has been paired with THEN

• So, add order THEN < ELSE

17

Advantage:
For small to medium
sized grammars,
C2VPG can find the
tagging efficiently with
a high likelihood.

Discussion

Why C2VPG fails to identify a suitable tagger:

• Return symbols containing multiple tokens. In Ada2005, IF is
paired with END IF.

• Call symbols embedded in nonterminals. In Modelica:

18

Discussion

Why C2VPG fails to identify a suitable tagger:

• Hard-to-detect regular sub-grammars. In asmMASM:

The CFG sub-grammar is equivalent to

19

Conclusion and Future Work

• When existing, efficient tagging functions can often be found
quickly in practice.

• However, practical grammar features bring further challenges for
CFG-to-VPG conversion.

• In general, how far can we push the boundary of “efficient” tagging
functions?

• The tagging function brings a different aspect of parsing.
Thank you!

20

	Slide 1: C2VPG: Translating Practical Context-Free Grammars into Visibly Pushdown Grammars by Order-Based Tagging
	Slide 2: The Importance of Parsing
	Slide 3: Motivation
	Slide 4: Background: Visibly Pushdown Grammars
	Slide 5: Background: Model XMLs as VPGs
	Slide 6: Background: Model CFGs as VPGs
	Slide 7: Background: Model CFGs as VPGs
	Slide 8: Tagging Function
	Slide 9: Tagging Function
	Slide 10: Tagging Function
	Slide 11: Tagging Function
	Slide 12: C2VPG: Order-Based Tagging
	Slide 13: C2VPG: Order-Based Tagging
	Slide 14: C2VPG: Order-Based Tagging
	Slide 15: C2VPG: Order-Based Tagging
	Slide 16: C2VPG: Order-Based Tagging
	Slide 17
	Slide 18: Discussion
	Slide 19: Discussion
	Slide 20: Conclusion and Future Work

