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Abstract—Packed binary formats present a challenge for net-
work analysts, reverse engineers, and security researchers.
Determining which fields are required, which fields are op-
tional, and which fields can be repeated demands attention
to detail, specialized human expertise, and ample time. We
present an automatic schema inference approach targeting
the widely used protobuf serialization format. QOur approach
recursively identifies field arity constraints from a collection
of raw binary messages and reports them to a user as a
complete protobuf schema. In our evaluation, this approach
demonstrates high accuracy across a variety of inputs including
real-world protobuf messages and binary files.

1. Introduction

Protocol reverse engineering is a critical cyber-security
task performed by researchers, security analysts, and net-
work administrators [1], [2]. Unknown message formats
present a significant obstacle, taking time and effort to
manually reverse engineer [3]. Packed binary formats are
particularly difficult for humans to reason about as the
binary data is inherently ambiguous [4].

Protocol buffers or Protobuf' is one such packed binary
message format widely used in enterprise software, mobile
applications [5], and Internet of Things (IoT) devices [6],
[7]. Protobuf is a self-describing format, where the indi-
vidual fields of a message are serialized with a field data-
type, and a field number.” This information is sufficient for
the receiver to validate and interpret the message according
to a specific schema. Unfortunately, the complete schema
information is not contained in the message itself, and at
present requires a human expert to infer it painstakingly by
hand.

This paper focuses on recovering key schema structural
information from the observation of multiple raw protobuf
messages. Specifically, whether a field is optional, required,
or can be repeated within a message. By observing the
presence or absence of each field across a collection of
messages, as well as the number of times each field is

1. https://protobuf.dev/
2. https://protobuf.dev/programming- guides/encoding/

repeated in a single message, our approach infers a precise
schema automatically, even in complex situations.

Our paper is organized as follows. First, we present
a brief background on protocol reverse engineering and
packed binary formats in Section 2. Next, we present our
three main contributions:

e An algorithm for inferring protobuf schemas from
raw binary messages in Section 3;

e An implementation of this algorithm as an end-user
tool called FUBOTORP;

e An evaluation of our algorithm on example data
in Section 4 including results from four real-world
protobuf datasets.

We then discuss related works in Section 5 before con-
cluding with an examination of the current limitations and
avenues for future work in Section 6.

2. Background & Assumptions

Broadly, protocol reverse engineering is the process of
recovering a precise specification for an unknown or un-
documented protocol. Different approaches leverage differ-
ent inputs including binary programs, traces of execution,
source code, or in the most challenging cases only passively
collected network traces. Protocol reverse engineering from
traces for packed binary protocols is particularly challenging
as these are largely devoid of meaningful text to aid an
analyst. Instead, packed binary formats focus on efficient
use of bandwidth, and flexibility across a variety of use
cases. Serialization libraries and their accompanying serial-
ized messages allow developers to avoid having to write bi-
nary message serialization and deserialization from scratch.
Instead, by writing a high-level schema or description, the
library produces this code automatically. This pattern is
widespread and supported by several different tools includ-
ing protobuf, flatbuffers?, capnproto*, and messagepack’ to
name a few. Among these protobuf one of the most widely

3. https://flatbuffers.dev
4. https://capnproto.org
5. https://msgpack.org
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message Example {
required int32 fieldl = 1;
repeated string field2
optional int32 field3 = 3;
}
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Figure 1. Example protobuf schema with three fields: a required 32-bit
integer, a variable number of strings, and an optional 32-bit integer. Each
field is defined with its constraints (required, repeated, optional), its data-
type, an identifier (fieldl - - - field3), and a field number (1 - - - 3)

used across a variety of contexts []. The key feature of
tools like protobuf is the ease of creating and using complex
binary message formats. While this is great for a developer,
it presents significant challenges for a reverse engineer, as
the resulting messages vary widely in on-the-wire layout,
number of fields, and field data-types. Packed binary formats
handle this complexity by making the data self-describing.
That is to say, by automatically including small pieces of
meta-data to aid the deserializer. This information is library
specific, and like all binary data, assumes some preshared
agreement on how to interpret the data. As a result, reverse
engineering packed binary formats such as protobuf can
leverage these binary clues as a steppingstone to recovering
a complete schema for the protocol.

Our approach to recovering these schemas is subject to
the following three assumptions.

1)  We have multiple raw messages which adhere to a
single protobuf schema.

2) The messages are unencrypted and error-free.

3) We assume that each schema field appears at least
once in the collection.

Multiple messages can be collected from a system or
IoT device using network security tools such as burpsuite®,
mitm-proxy’, or Wireshark®. These tools also include ca-
pabilities for capturing message clear-text through a Man-
in-the-middle attack, use of a root-certificate, or simply
exploiting the lack of certificate validation which is common
in many IoT devices [8], [9], [10].

One scenario these assumptions cover is that of a se-
curity analyst who wants to understand the message for-
mat an IoT device uses. Understanding the format, and
the semantics of the messages aids in identifying potential
vulnerabilities for exploit or for further exploration via
fuzzing [11], [12], [13]. Another scenario would be when a
software engineer wants to extend a proprietary system with
custom middleware but needs to develop a parser [14]. A
third scenario would be a network administrator who wants
to develop firewall rules to distinguish between innocuous
and malicious network traffic [15], [16] or create traffic for
testing network security tools [17].

We show an example protobuf schema in Figure 1, with
the consuming automata in Figure 2 and an illustration of

6. https://portswigger.net/burp
7. https://mitmproxy.org
8. https://wireshark.org
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Figure 2. State-machine diagram of Example schema.

m1 ‘ field 1 \ ‘ field 2 \ ‘ field 3 \
m2 | field1 | | field2 | | feld2 || fewd3
m3 ‘ field 1 \ ‘ field 2 \

Figure 3. Illustration of three messages (m1 to m3) adhering to our example
schema from Figure 1.

three example messages in Figure 3. This protobuf schema
describes a message composed of three fields. Each field is
defined with four pieces of information. First, a constraint
on the number of times a field is present in a message.
Second, a data-type for the field. Third, a field identifier.
Fourth, a field number, which uniquely identifies the field
in the message. One subtlety of protobuf is that while field
numbers must all be positive integers, they do not need
to be used sequentially, allowing for skipped numbers and
gaps. When a protobuf message is received, the field number
is used in combination with the data-type to interpret the
field value and to check that the schema constraints on
field repetition are satisfied. We now turn to how we use
these field numbers to infer a schema from a collection of
unknown protobuf messages.

3. Inference Method

Our goal is to recover a schema which describes a
collection of observed protobuf messages. As individual
protobuf fields are self-describing, the key obstacle is to
recover whether a specific field is always present, if it is
optional, and whether it ever appears multiple times. We
call the field presence and repetition information the arity
constraints of the field.

This information is expressed in the protobuf schema
as the three keywords required, optional, and
repeated. These arity keywords are the key pieces of

m3 ‘ #1 | int32 | value | #2 |string| value ‘

field 1 field 2

Figure 4. Illustration of on-the-wire layout of message m3. On the wire,
each field has three sub-regions: the field number, the field type, and the
field value or payload. For cases where the field is variable size, the field
type also encodes information about the overall length of the payload.
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information which we need to infer a schema consistent with
the collection of messages. The other schema values—field
data-types, field numbers—are contained in the messages
themselves and can be directly transcribed to the inferred
schema.

To recover the arity, we first interpret each message
according to the protobuf primitives producing a list of
fields numbers, and types. We then consider how many times
each field occurs in each message. Then, by observing the
presence or absence of a field across a collection of multiple
messages we can determine if it is always present, if it is
sometimes present, or if it is present more than once in a
single message. We use these observations to infer the arity
constraints of each field in the collection.

3.1. From Messages to Fields

We interpret each message according to the protobuf
wire format specification. Each message consists of one
or more fields. A field is composed of three pieces of
information: the field number, the field data-type, and the
field value. We illustrate an example of these field sections
in Figure 4. Our focus here is on the field number as
this uniquely identifies the field in the schema, and in the
observed data. From our example, message m1 becomes the
list of field numbers [1,2,3], message m?2 the list [1,2,2,3],
and m3 the list [1,2].

3.2. From Fields to Occurrences

For all distinct fields observed over a collection of mes-
sages, we create a occurrence vector for each field using the
field number. The occurrence vector is defined as the number
of times a field number is observed in each message of a
collection. We define the occurrence matrix for a collection
as the matrix comprised of the individual occurrence vectors
and give an algorithm for calculating it in Algorithm 1.

Algorithm 1: Calculating Occurrence Matrix

Data: MSGS (Observed Messages)
Result: X (Occurrence Matrix)
FIELDS < {fieldnum € MSGS};
X < Matrix |[FIELDS| columns x |[MSGS| rows;
for fieldnum € FIELDS do
for msg; € MSGS do
\ X fieldnum,i < count of fieldnum in msg;;
end
end

N kW N =

Having calculated our occurrence vectors, we now turn
to using them to infer the field arity constraints.

3.3. Interpreting Occurrence Vectors

Intuitively, the field arity constraints can be thought of
as observed properties over the number of occurrences of
a field. For example, when there are 0 occurrences of a
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Figure 5. Sequential DFA construction from messages m1 through m3

field in some message in a collection, we can infer that
the field must be optional in the schema. Similarly, when
we observe that there are multiple occurrences of a field in
some message, we can infer that the field must be repeatable
according to the schema.

We map our field number observations to arity con-
straints for use in the schema using the following equations.

We define two formal tests: OPTIONAL and REPEATED,
along with one heuristic test: REQUIRED. The OPTIONAL
test (Equation 1) determines if there is any instance where a
field was not present in a message. Similarly, the REPEATED
test (Equation 2) determines if there is any instance where
a field appeared more than once in a single message. We
consider these tests formal, as once they are satisfied by a
collection of messages, no additional message can refute or
negate them, and the underlying schema must have these
constraints for the respective fields.

OPTIONAL(Xfieldnum) =dz e Xfieldnumax =0 (D
REPEATED (X ficidnum) = 3 € Xfictdnum, < > 1 (2)

REQUIRED(Xfieldnum) =V € Xfieldnum7 z # 0 (3)

However, our heuristic test REQUIRED (Equation 3) can
be negated by some additional message which omits the
field, changing the arity in the schema from required to
optional. We discuss the impact of additional messages
in Section 3.4. Put simply, once a field is optional or
repeated it will remain so, while a required field only
holds for the data so far.

Intuitively, evaluating a collection of messages according
to these tests can be likened to the process of refining a
state machine for deserializing a message. In this process
the OPTIONAL test adds e transitions between states, while
the REPEATED test adds self-loops. We illustrate this concept
in Figure 5, showing the construction of the DFA for our
example at each stage as new messages are evaluated.



Message | Fieldl  Field2 Field3
ml 1 1 1
m2 1 2 1
m3 1 1 0

TABLE 1. OCCURRENCE MATRIX FOR OBSERVED COUNTS OF THREE
FIELDS FOR A SERIES OF THREE MESSAGES (M1 THROUGH M3).

message [ 1 A
required int32 [__ ] = 1;
repeated string [ ] = 2;
optional int32 [___ 1 = 3;
}

Figure 6. Resulting inferred protobuf schema.

Returning to our example messages in Figure 3, we infer
our arity constraints by using Algorithm 1 to construct an
occurrence matrix as shown in Table 1. Once constructed,
we then evaluate each occurrence vector according to OP-
TIONAL,REPEATED, and REQUIRED texts to infer the arity
constraints for each field. We show the resulting inferred
schema in Figure 6.

A note on protobuf schema syntax limits. While our
approach can infer precise arity constraints, protobuf schema
syntax cannot express these fully. First, the repeated
keyword implicitly means any number of repetitions, in-
cluding 0. As a result, repeated cannot be combined
with the required keyword. The complete inferred arity
constraints would likely be useful to an end-user and can
easily be included in the resulting schema as annotations.

Ultimately the inferred schema is only representative of
the observed data. If a field is present in every message
observed, it may in fact be required, or we may have
yet to see a message with a counterexample. We examine
exactly this situation in the following section and discuss it
further in our evaluation (Section 4).

3.4. Additional Messages

Next, we consider what happens to the arity constraints
when we include a new message (m4) in our collection. We
illustrate the expanded collection in Figure 7. Message m4
omits field 2 entirely, while including 3 instances of field
3. This message is at odds with the schema in Figure 6,
and the final DFA in Figure 5. This scenario is consistent

mi | feldt | [ feld2 | | fieds |

m2 | feldt || feld2 | [ fed2 || fews |
m3 | feldt || feld2 |

m4 [ feldt1 | [ felds | [ fes || fews |

Figure 7. Illustration of four messages.

Message \ Field1 Field2 Field3
ml | 1 1 1
Inferred . . .
Constraints 1 Required Required  Required
m2 | 1 2 1
Inferred . Required .
Constraints 2 Required Repeated Required
m3 | 1 1 0
Inferred . Required .
Constraints 3 Required Repeated Optional
m4 | 1 0 3
Inferred . Optional ~ Optional
Constraints 4 Required Repeated  Repeated

TABLE 2. OBSERVED ARITY CONSTRAINTS OF THREE FIELDS FOR A
SERIES OF FOUR MESSAGES (M1 THROUGH M4).

with situations where a manufacturer or developer changes
a protocol, to make an existing field optional or to add an
entirely new field. A researcher must update their inferred
schema to incorporate the newly observed message. Our
inference algorithm can be applied one message at a time to
capture how the arity constraints change. We illustrate this
sequential application in Table 2.

field2

field3
N

Figure 8. DFA construction from observed messages ml through m4

message [ 1 {
required int32 | 1 =1;
repeated string [ 1 = 2;
repeated int32 [ 1 = 3;

}

Figure 9. Example protobuf schema with three fields: a required 32-bit
integer, a variable number of strings, and a variable number of 32-bit
integers.

This table illustrates how our approach not only can
produce a revised schema (Figure 9 and 8), but can help
a researcher understand specific differences between groups
of messages, such as those observed between two different
versions of an IoT device.

3.5. Recursive Schema Inference

A key design feature of protobuf is the ability to define
subformats as field datatypes, as shown in Figure 10. Sub-
format field values are serialized as complete protobuf mes-
sages according to the subformat schema. These subformat



message Format {
required int32 fieldl
optional string field2
repeated Subformat field3 = 3;
}
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message SubFormat {
required string
required int32

}

fieldl = 1;
field?2

|
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Figure 10. Example protobuf schema with nested subformat.

bytestrings are inserted into the encapsulating message at
the appropriate field position. Subformats allows schema au-
thors to group fields according to semantics or intended use.
Importantly, the field names and numbers of each subformat
are independent of those from the encapsulating format and
any other subformats. As the subformat bytestring values
are independent of the encapsulating format, and satisfy the
same assumptions, performing recursive format inference is
trivially simple. First, when a field’s on-the-wire serializa-
tion type is a bytestring, after inferring the arity as normal
our algorithm recurses on the field bytestring values as a
complete set of messages. If a schema is inferred by our
algorthim from those messages, we update the field type
with the subformat, leaving the field type as a bytestring
otherwise. This simple extension allows our approach to
recover complex nested schemas as we discuss next in our
evaluation.

4. Evaluation

We evaluate the effectiveness of our approach on the task
of automatic inference of schemas using only raw messages
as input. As protobuf fields are encoded with a field number
and type (Figure 4), our evaluation focuses on accurately
inferring the arity of the fields, both for top-level formats,
and nested subformats.

We conduct this evaluation in third phases. First, we
evaluate our arity inference under controlled conditions on
synthetic data (Section 4.2). Next, we evaluate FUBOTORP
on 4 real-world datasets in scenarios consistent with a
security analyst reverse engineering unknown file or network
data formats (Section 4.3). Finally, we include a short case
study detailing the effectiveness of our approach on a real-
world unknown file (Section 4.4).

Our synthetic evaluation shows FUBOTORP correctly
inferred the arity across most of our test cases, and perfectly
for collections of 10 messages or more, a strong positive
result. Our real-world evaluation shows FUBOTORP correctly
inferred field arity in all four datasets subject to data diver-
sity. Further, FUBOTORP’s ability to infer arity recursively on
nested subformats allowed it to produce schemas consistent
with the ground truth hierarchy in all cases.

4.1. FUBOTORP Implementation
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message InfFormat ({

required int32 fieldl = [ F1_|1;
repeated string field2 = [ F2 |2;
optional int32 field3 = [ F3 |3;}

Figure 11. Illustration of the FUBOTORP inference steps.

To perform our evaluation, we implemented our algo-
rithm as a python tool we call FUBOTORP. FUBOTORP takes
as input a sequence of raw protobuf messages, and produces
as output a protobuf version 2.0 schema. We illustrate the
inference steps of our tool in Figure 11. Our approach is
modular, allowing different on-the-wire interpretation ap-
proaches to be substituted. FUBOTORP creates placeholder
field names, as these are not transmitted with the message,
nor can the original names be easily inferred from the data-
types alone as others have shown [18], [19]. FUBOTORP
returns the inferred schema as ASCII text directly to the
user. Our tool uses the protobuf wire-format data-type iden-
tifiers directly in the output schema as shown in Figure 11.



Number of Messages per Collection

Field Layout 1 2 3 4 5 6 7 8 9 10 15 20 25
required 1.00 100 1.00 100 1.00 100 1.00 100 100 1.00 100 1.00 1.00
optional 048 0.80 088 094 09 098 099 100 1.00 100 1.00 1.00 1.00
repeated 091 097 100 100 100 100 1.00 100 1.00 100 1.00 1.00 1.00
Average (1 field) | 080 092 096 098 099 099 100 1.00 100 100 1.00 1.00 1.00
required,required .00 1.00 1.00 100 1.00 100 1.00 100 1.00 1.00 100 1.00 1.00
optional,optional 052 072 084 097 09 097 099 098 1.00 100 1.00 1.00 1.00
repeated,repeated 089 099 099 100 1.00 100 100 100 1.00 100 1.00 100 1.00
required,optional 074 091 093 095 097 099 1.00 100 099 100 1.00 1.00 1.00
optional,required 050 075 085 094 099 099 099 099 1.00 100 1.00 1.00 1.00
required,repeated 095 099 100 100 100 100 1.00 100 1.00 100 1.00 1.00 1.00
repeated,required 087 098 100 1.00 1.00 100 100 100 1.00 100 1.00 100 1.00
optional repeated 049 078 089 094 095 098 098 099 1.00 100 1.00 1.00 1.00
repeated,optional 071 090 094 095 099 099 098 100 099 100 1.00 100 1.00
Average (2 fields) | 074 089 094 097 098 099 099 100 100 100 100 1.00 1.00
required,required,required | 1.00 1.00 1.00 1.00 1.00 100 100 1.00 1.00 100 1.00 1.00 1.00
optional,optional,optional | 0.52 0.80 090 093 098 098 099 1.00 100 1.00 100 1.00 1.00
repeated,repeated,repeated | 0.89 097 1.00 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
required,optional,repeated | 0.68 0.81 091 097 098 099 099 100 1.00 100 1.00 100 1.00
required,repeated,optional | 0.82 090 095 098 1.00 099 1.00 100 1.00 100 1.00 100 1.00
optional,required,repeated | 0.53 0.73 088 097 099 098 099 100 1.00 100 1.00 100 1.00
optional,repeated,required | 046 0.77 086 095 097 099 099 099 099 100 1.00 1.00 1.00
repeated,required,optional | 0.78 092 097 098 098 099 1.00 100 1.00 100 1.00 100 1.00
repeated,optional,required | 0.62 0.81 092 095 097 099 099 099 1.00 100 1.00 100 1.00
Average (3 fields) | 070 086 093 097 099 099 099 1.00 1.00 100 1.00 1.00 1.00
Average (5 fields) | 0.64 080 089 094 097 099 099 100 100 100 100 1.00 1.00
Average (10 fields) | 061 075 086 092 097 098 099 100 100 100 100 1.00 1.00
Average (20 fields) | 054 064 078 088 093 09 098 099 100 100 1.00 1.00 1.00

TABLE 3. EXPERIMENTAL RESULTS REPORTING THE AVERAGE ACCURACY PER FIELD LAYOUT AND NUMBER OF MESSAGES.

We plan to release FUBOTORP as open-source in the near
future.

4.2. Synthetic Data Inference Evaluation

Our approach assumes representative data, that is to say,
a collection of messages where optional fields are omitted
in at least one message, and repeated fields are repeated in
at least one message. When these assumptions are met our
inference approach will have perfect accuracy, as there is
no ambiguity in the data. However, in practice a researcher
must work with the data they have, often in smaller quan-
tities than they would like. To characterize the accuracy of
our approach across a variety of conditions we generated
collections of messages with varying numbers of fields.
Optional fields were included in messages with a probability
of 0.50, while repeated fields were generated uniformly with
0 to 9 repetitions per message. A repeated field thus had a
0.10 probability of being omitted from a message. For other
parameter choices our results would differ.

We generated layouts of 1, 2, 3, 5, 10, and 20 fields. For
layouts with 3 or less fields, we included all permutations
across the three field arities (optional, repeated, required),
as well as cases where all fields were of the same arity. For
each layout we generated 100 collections with increasing
numbers of messages. We included collections with only a

single message but note that in real-world applications we
would assume there are two or more messages for inference.
For each test case we compared the ground-truth arity with
the inferred arity. We consider the inferred arity keyword
accurate if it matched the ground-truth arity, and incorrect
otherwise. We report these results in Table 3.

Unsurprisingly, our approach displayed perfect accuracy
across all test inputs using only a collection of 10 messages.
We interpret this as a strong positive result. For collections
with fewer than 10 messages, the most common error was
for an optional field to be mistakenly inferred as having
required arity for collections where the field was present in
every message. Similarly, but less frequently, repeated fields
which were either omitted, or appeared only a single time
across a collection of messages were mistakenly inferred
as optional or required. Again, these results characterize
how our approach would perform in real-world situations
where the distribution of field arities across a collection
of messages varies by protocol use case. These results
on synthetic data informed our observations on real-world
datasets which we discuss next.

4.3. Real-World Protobuf Format Evaluation

We evaluate FUBOTORP on real-world protobuf formats,
collected in the wild. We identified four datasets of public



message glyphs {
repeated fontstack stacks = 1;

}

message fontstack ({
required string name = 1
required string range =
repeated glyph glyphs
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message glyph {
required uint32 id = 1;
optional bytes bitmap = 2;
required uint32 width = 3;
required uint32 height = 4;
required sint32 left = 5;
required sint32 top = 6;
required uint32 advance = 7;

message Format {
required Format A fieldl = 1;
}

message Format A {
required bytes fieldl = 1;
required bytes field2 = 2;

repeated Format B field3 = 3;
}

message Format B {
required int32 fieldl = 1;
optional bytes field2 = 2;
required int32 field3 = 3;
required int32 fieldd = 4;
required int32 field5 = 5;
required int32 field6 = 6;
required int32 field7 = 7;

Figure 12. Comparison of ground-truth (left) and inferred (right) schemas for GLYPH dataset. Arities for ’repeated’ and ’optional’ fields are color coded.

protobuf data. These four datasets consist of two instances
of binary file formats (VECTOR, GLYPH), and two instances
of network traffic respectively (GRPC, MTA).

The GLYPH dataset is composed of three files serializing
individual font characters or glyphs for use in map label-
ing, ranging from 10Kb to 129Kb in size.” The VECTOR
dataset consists of five files serializing map shapes such
as outlines of buildings, regional boundaries, and natural
features.!® These files ranged from 52Kb to 358Kb in size.
The GRPC dataset consists of two messages—66 Bytes, and
179 bytes respectively—exchanged between a gRPC client
and server.!! gRPC leverages protobuf encoding for data
exchange. Finally, the MTA dataset consists of six gRPC-web
messages'> from the Metro Transit Authority'> (MTA) pub-
lic datafeed API endpoint. These messages communicate the
real-time status of MTA vehicles. Similar to gRPC, gRPC-
web serializes data using protobuf and transports it over
an HTTP connection. We collected the dataset messages
from two different subway lines at one-minute intervals with
message sizes ranging from 24Kb to 128Kb.

For each dataset, we used either a reference schema
provided with the data (GLYPH, VECTOR, GRPC), or the
standardized schema referenced by the API (MTA). All
schemas included nested subformats, making them excellent
tests of FUBOTORP’s ability to infer arity given complex
schema hierarchies.

Next we validated that these reference schemas parsed

9. https://github.com/mapbox/glyph-pbf-composite

10. https://github.com/klokantech/mapbox-gl-js-offline-example
11. https://grpc.io/blog/wireshark

12. https://api.mta.info/#/subwayReal TimeFeeds

13. https://www.mta.info/

the data using the protobuf compiler command protoc. '4

The only deviations reported by protoc were instances
where some fontstack subformats in the GLYPH dataset
omitted the range field. This divergence highlights an
important motivation for protobuf reverse engineering: out-
of-band verification of data formats. Protobuf’s on-the-wire
format is designed to allow a deserializer to skip over fields
and subformats at will. This design decision means that data
divergence may only be discovered if and when a field is
deserialized. An advantage of this choice is that a complete
schema is not needed to deserialize a subset of fields, only a
schema which is complete relative to that subset. We elected
to use these datasets, divergences included as these are the
conditions under which real-world reverse engineering takes
place.

While protobuf encodes datatypes in the on-the-wire
serialization, the serialized datatypes are sometimes less
precise than schema datatypes. For example, both strings
and byte strings are serialized as a bytes field, requiring
the schema to tell a parser when to differentiate. Simi-
larly, a variety of integer fields are serialized as variable
length integers, regardless of whether the values are signed,
unsigned, or represent a small range of values such as
an enumeration. FUBOTORP reports the schema equivalent
of the on-the-wire serialized type. For strings, this means
FUBOTORP reports a type of bytes. For varint (variable
length binary encoded integers) numeric formats such as
signed and unsigned 32-bit integers, FUBOTORP reports the
int32 type. Again, the focus of our evaluation is field
arity, especially the field arity of nested subformats. While
several tools have been developed for deserializing the on-

14. https://protobuf.dev/installation
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message Person {

required string name = 1;
required int32 id = 2;
optional string email = 3;

repeated PhoneNumber phone = 4;
optional Timestamp last updated

= 5;
optional bytes portrait image = 6;

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2;
t

message Format {
required bytes fieldl = 1;
required int32 field2 = 2;
required bytes field3 =

. N

repeated Format A field4 =
optional Format B field5 =
optional bytes field6 =

~.

oy U1 W N
~

~.

message Format A

required bytes fieldl = 1;

optional int32 field2 = 2;
}
message Format B {

required int32 fieldl = 1;

}

Figure 13. Comparison of ground-truth (left) and inferred (right) schemas for the GRPC dataset. Arities for ‘repeated’ and ’optional’ fields are color coded.
In the ground-truth schema, the definition of Timestamp message format as a 32bit integer is pulled from an external reference.

the-wire encodings'>'%!7, some employing simple heuristics

to make intelligent choices between bytestreams and strings,
we focus on overall format structure and leave improved
datatype inference for future work.

For each dataset, we ran FUBOTORP with the binary
files as input and captured the inferred schema. We then
used the inferred schema to parse input file validating that
our inferred schema was consistent with the data. For all
four datasets our inferred schemas were consistent with the
data and reported no parsing errors. We consider this a
strong positive result showing the utility of our tool to infer
arities and produce schemas under real-world conditions.
We next examined the inferred schema for each dataset
respectively. To aid this analysis, we ordered the inferred
schema message formats consistent with the corresponding
ground-truth schema message formats, starting with the root
or outer most message format. We now discuss each of the
four inferred schemas in detail.

4.3.1. GLYPH Dataset. We report our inferred schema for
the GLYPH dataset compared to the ground-truth schema
in Figure 12. The GLYPH dataset has two layers of nested
submessage formats. FUBOTORP was able to both iden-
tify the subformats, and identify the arity of the fields
within. As the dataset messages each included only a single
fontstack submessage the inferred arity for this field
(Format fieldl) was inferred only as required. This
result illustrates that inference is limited to the diversity of
the underlying dataset, reinforcing the our observations from

15. https://github.com/mildsunrise/protobuf-inspector
16. https://github.com/vpetrigo/rev-protobuf
17. https://github.com/pawitp/protobuf-decoder

Section 4.2. For Format_A field3, and Format_B
field2, the respective arities of repeated and optional were
correctly inferred, a strong positive result.

4.3.2. GRPC Dataset. We report our inferred GRPC dataset
schema compared to GRPC ground-truth schema in Fig-
ure 13. The GRPC dataset has two layers of nested
subformats. FUBOTORP correctly inferred the organiza-
tion and arities of the fields, save Format field3,
which was present in all messages and as a result in-
ferred as required instead of opt ional. One subformat
(Timestamp) was defined in the ground-truth schema as
an import from an external schema corpus. As FUBOTORP
uses only the data in the messages, it inferred the under-
lying representation of that subformat as a 32-bit field in
Format_B.

4.3.3. VECTOR Dataset. The VECTOR dataset is composed
of three layers of nested subformats. For the outer two
layers FUBOTORP performed similarly to the GLYPH and
GRPC datasets as shown in Figure 14. In the underlying data
Format_A field 5, was present in all submessages and
as a result was inferred to be required instead of optional.
For the nested subformats Format_B and Format_C-—
Feature and Value in the ground truth—-we observed that
the on-the-wire datatypes did not match the ground-truth
schema for several fields. For two fields this difference
was due to the data using a packed (compressed) serializa-
tion. FUBOTORP’s on-the-wire deserializer presently expects
unpacked values. In several cases where the ground-truth
schema specified a 64-bit value, FUBOTORP reported 32-
bit type. This discrepancy is due to the use of varints
(variable length binary encoded integers). Protobuf attempts
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message Tile {
repeated Layer layers = 3;

}

message Layer {
required string name = 1;
repeated Feature features = 2;
repeated string keys = 3;
repeated Value values = 4;
optional uint32 extent = 5;
required uint32 version = 15;

message Feature {
optional uint64 id = 1;

repeated uint32 tags = 2 [packed=true];

optional GeomType type = 3;

repeated uint32 geometry = 4 [packed=true];

message Value {
optional string string value =
optional float float value = 2;
optional double double value = 3;
optional int64 int value = 4;
optional uint64 uint value = 5;
optional sint64 sint value
optional bool bool value =

~ |l
~.
o
~

message Format {
repeated Format A field3 = 3;
}

message Format A {
required bytes fieldl =1
repeated Format B field2 = 2
repeated bytes field3 = 3;
repeated Format C field4 = 4
required int32 field5 = 5

required int32 fieldl5 = 15;

message Format B {
required int32 fieldl = 1;
required bytes field2 = 2;
required int32 field3 = 3;
required bytes fieldd = 4;

message Format C {
optional bytes
// No field 2
optional int64
optional int32
// No field 5
// No field 6
// No field 7

fieldl = 1;

field3 = 3;
field4 = 4

Figure 14. Comparison of ground-truth (left) and inferred (right) schemas for the VECTOR dataset. Arities for 'repeated’ and ’optional’ fields are color
coded. Annotations added to aid the reader are prefixed with “//”. The differences in the lower two pairs of message formats arise from use of packed

values, and 32-bit varints being cast up to 64-bit types.

to make messages as short as possible by removing leading
0 bits from multibyte integer fields. When deserialized, if the
schema integer type is larger than the value, the value is cast
up. These nuances underscore the importance of comparing
multiple messages or data instances for schema inference,
as some properties will occur only on occasion, and not in
every observed field value.

4.3.4. MTA Dataset. Our final dataset, MTA, was the most
complex in terms of structure. The ground truth-schema
defines 28 message formats, nested up to six-layers deep.
Given the six binary messages as input, FUBOTORP re-
covered 22 message formats and the accompanying hier-
archical structure from the data alone, a strong positive
result considering the complexity of the data. We report
our inferred MTA schema compared with the ground-truth
schema for the outer three format levels in Figure 15. The
inferred schema highlights the importance of obtaining a
representative sample with respect to the overall schema.
Specifically, in the MTA dataset, many of the ground-truth
schema optional fields, and several subformats were never
observed in the collected data. As a result the field numbers
for inferred fields contained gaps. While there is no require-

ment that a schema designer use field numbers sequentially,
or under any restriction other than avoiding duplicates, most
schemas we observed do in fact number fields sequentially.
This information is useful to a reverse engineer, indicating
inferred schema gaps which additional messages might fill
in. In Figure 15 we add annotations to indicate these gaps as
an aid to the reader. The complexity of the inferred schema
serves as a reminder that the outputs of reverse engineering
automation require appropriate interfaces to support inter-
pretation by human experts [4].

4.4. Case Study: Unknown file

We conclude our evaluation with short case study in
format reverse-engineering drawn from the real world. We
identified a public forum post where a user asked for
help deserializing an 86 megabyte binary file with an un-
known schema.'®!® This post offered the opportunity to
test FUBOTORP in a real-world scenario on a large real-

18. https://groups.google.com/g/protobuf/c/coqY vMbNURwW/
19. https://drive.google.com/file/d/12sBfxPsG1s2rVSewnkr_
2ptfq4102bSM
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message FeedMessage {
required FeedHeader header
repeated FeedEntity entity

Il
[N

message FeedHeader ({
required string gtfs_realtime ver = 1;
optional Incr incr = 2;
optional uint64 timestamp = 3;

optional string feed_version 4;

message FeedEntity ({
required string id = 1;
optional bool is deleted = 2;
optional TripUpdate trip update = 3;
optional VehiclePosition vehicle = 4;
optional Alert alert = 5;

optional Shape shape = 6;
optional Stop stop =
optional TripMods trip mods = 8;

message TripUpdate {

message Format { //FeedMessage
required Format A fieldl = 1;
repeated Format E field2 = 2;
}

message Format A { //FeedHeader

required bytes fieldl = 1;
// No field 2
required int32 field3 = 3;

// No field 4

message Format E { //FeedEntity
required bytes fieldl = 1;
// No field 2
optional Format F field3 = 3;
optional Format M field4
optional Format P field5 =
// No field 6
// No field 7
// No Field 8

mnmn
[0

message Format F { //TripUpdate

required TripDescriptor trip = 1; required Format G fieldl = 1;
repeated StopTimeUpdate stop_time_ update = 2; repeated Format I field2 = 2;
optional VehicleDescriptor vehicle = 3; // No field 3
optional uint64 timestamp = 4; // No field 4
optional int32 delay = 5; // No Field 5
optional TripProperties trip properties = 6; // No field 6

} }

message VehiclePosition ({ message Format M { //VehiclePosition

optional TripDescriptor trip = 1;
optional Position position = 2;

required Format N fieldl = 1;
// No field 2

optional uint32 current_stop_sequence = 3; optional int32 field3 = 3;
optional VehicleStopStatus current_status = 4; optional int32 fieldd4 = 4;
optional uint64 timestamp = 5; required int32 field5 = 5;
optional CongestionLevel congestion level = 6; // No field 6
optional string stop_id = 7; required bytes field7 = 7;
optional VehicleDescriptor vehicle = 8; // No field 8
optional OccupancyStatus occupancy status = 9; // No Field 9
optional uint32 occupancy percentage = 10; // No field 10
repeated CarriageDetails multi_ carriage dets = 11; // No Field 11
}

}

message Alert { message Format P { //Alert
repeated TimeRange active period = 1; // No field 1
// No field 2 // No field 2
// No Field 3 // No Field 3
// No field 4 // No field 4

repeated EntitySelector informed entity = 5;
optional Cause cause = 6;

optional Effect effect = 7;

optional TranslatedString url = 8;

// No Field 9

optional TranslatedString header text = 10;

optional Format Q field5 = 5;
// No field 6

// No field 7

// No Field 8

// No Field 9

required Format T fieldl0 = 10;

optional TranslatedString description text = 11; // No Field 11
optional TranslatedString tts_header text = 12; // No Field 12
optional TranslatedString tts_description text = 13; // No Field 13
optional SeveritylLevel severity level = 14; // No Field 14
optional TranslatedImage image = 15; // No Field 15
optional TranslatedString image alternative text = 16; // No Field 16
optional TranslatedString cause detail = 17; // No Field 17
optional TranslatedString effect detail = 18; // No Field 18

Figure 15. Comparison of ground-truth (left) and inferred (right) schemas for the MTA dataset showing the top three levels of format hierarchy. Arities
for ’repeated’ and ’optional’ fields are color coded. Annotations added to aid the reader are prefixed with “//”.



message Format ({
repeated Format A fieldl = 1;
}

message Format A {
repeated bytes field2 = 2;
repeated int32 fieldd = 4;
repeated int32 field5 = 5;
repeated int32 field8 = 8;
repeated int32 field9 = 9;

fieldlO0 = 10;
fieldll = 11;

repeated into64
repeated bytes

Figure 16. Inferred schema for unknown file. Arities for 'repeated’ fields
are color coded.

world file. We report the inferred schema for this file in
Figure 16. While no ground-truth schema was provided,
we examined the deserialized data and found the structure
consistent with the inferred schema, save for one divergence.
We observed that the data in Format_A field 2 was
almost always a string containing a domain name, but on
occasion was a bytestring which could be interpreted as a
protobuf subformat. We were unable to construct a valid
protobuf schema consistent with this representation. As both
strings and serialized protobuf messages are bytestrings, we
concluded that this was a case where subformat bytestring
and string values were intermingled in a single field. Custom
deserialization logic could interpret the value of this field
by first attempting to deserialize as a protobuf message, and
should that fail, reverting to interpreting as a simple string.
While FUBOTORP does not currently support this type of
mixed inference, it could be added through future work.

5. Related Work

Our approach focuses on directly inferring a schema
from protobuf messages. This work is most closely related
to research aimed at automatic protocol reverse engineering.
These efforts are well summarized by Narayan et. al and
Kleber et. al [1], [2]. Broadly, protocol reverse engineering
focuses on recovering a specification from some artifact of
the original system, usually a network trace [20], [21], [22],
[23], a binary executable [24], [25], [26], or a trace of the
running program itself [27].

Research leveraging network traces as input can be cate-
gorized as producing either a precise semantic description of
the protocol, or a heuristic description of the observed data.
Examples of a precise description include an inferred gram-
mar, or generated parser. Chandler et al.’s BinaryInferno and
Pohl et al.’s AWRE are two examples of approaches which
produce these precise semantic specifications [20], [21].
Alternatively, a heuristic description of observed data often
equates to byte-strings being segmented into guessed fields
as is employed by Netplier [22] and Bossert’s Netzob [28].

These heuristic guesses require further work by an analyst
to refine into something useful.

Other relevant related work draws on research into gram-
mar inference of regular languages. Of these, Angulin’s
work on L* is directly related to techniques to infer state
machines for unknown network protocols [29], [30]. A
key take-away from Angulin’s work is that both positive
and negative examples are necessary to correctly learn a
format. As we observed in our evaluation, correctly inferring
optional and repeated arities requires observing the absence
of a field, and the repetition respectively.

6. Limitations & Future Work

Our approach to inferring schemas from raw protobuf
messages has four main limitations. First, our approach
is limited to protobuf as it leverages the serialized field
numbers contained in protobuf messages. For other general
serialization frameworks such as flatbuffers, msgpack and
capnproto, our approach could be adapted if those formats
include similar information. One example would be to lever-
age the type field a portion of type-length-value encodings
as a stand-in for field number. Second, our approach re-
quires messages consistent with a single schema. Messages
across different schemas could introduce conflicting arity
constraints and types for fields. One avenue of future work
would be to detect these conflicts for protobuf messages
automatically as a basis for segmenting the dataset before
performing inference. Third, the protobuf on-the-wire format
has allowances for append-only or last-one-wins fields. In
these situations, if a field appears multiple times in a mes-
sage, only the last instance of the field is deserialized. This
feature is primarily used for on-disk file formats, as network
use would waste bandwidth. At present our approach would
consider these instances as repetitions. Finally, our approach
cannot recover detailed schema meta-data such as individual
field names. This information is not transmitted with the
message. One potential solution to this would be to use a
combination of field data-type, and context to make a guess
regarding a field name. Leveraging the actual distribution of
field values to infer these names would be another avenue
for future exploration.
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