
Research Report: Parsing with the Logic FC
Owen M. Bell

Loughborough University
Loughborough, UK

Sam M. Thompson
Loughborough University

Loughborough, UK

Dominik D. Freydenberger
Loughborough University

Loughborough, UK

Abstract—FC is a logic on strings that has been primarily
studied in database theory for the purpose of information
extraction. In this report, we argue that it can be used for more.
In particular, we explain how FC and its various extensions
can be used as a unifying framework for combining parsers
that aligns with the principles of Language-Theoretic Security
(LangSec). We first survey the recent literature on FC and
its extensions, and explain the different criteria we have for
efficiency. We then describe how FC and its extensions can be seen
as a replacement for regex, and contextualise FC with Language-
Theoretic Security. Finally, we explain how, due to the natural
compositionality of the model, we can pull the extensions of FC
together into a framework for combining parsers.

Index Terms—Finite model theory, first-order logic, parsing.

I. INTRODUCTION

The logic FC was introduced by Freydenberger and Peter-
freund [1] as a first-order logic over finite strings. One of the
original motivations for this logic is information extraction:
The problem of extracting relevant information from unstruc-
tured textual data. In this research report, we argue that FC and
its extensions do not only constitute a logic for information
extraction, but also a unifying framework for text querying,
specifications, parsing, and more.

Language-Theoretic Security (or LangSec) proposes a solu-
tion for input-handling vulnerabilities; those that occur when
the parser (which filters valid input to the rest of the program)
does not sufficiently invalidate malicious input. This solution
is to specify valid inputs as a formal language and use a
recognizer for this language as the input-handling routine (see
e. g. [2]). We propose that, in addition to its original motivation
as a tool for information extraction, FC and its extensions
represent a framework for declarative input-handling, where
we can define the valid inputs as a formal language as before,
but use logic rather than a grammar as a recognizer.

Furthermore, FC is declarative (i.e., formulas express the
desired outcome rather than the computation), but both FC
and its extensions can use techniques from database theory and
finite model theory to become “efficiently declarative”. That
is, formulas come with a “lens” of how they can be evaluated
efficiently. Such lenses give us an evaluation algorithm and use
common techniques from database theory such as quantifier
rank (the nesting depth of the quantifiers), width (the maxi-
mum number of free variables in any subformula), treewidth
(intuitively, how similar a concatenation term’s graph is to a
tree-like structure), and acyclicity (if the query has a so-called
join tree). For more details on these criteria see Section III.

This report surveys a body of recent publications and
ongoing work that have addressed FC and its extensions from
a theoretical perspective. In the remainder of this section, we
give an informal description of FC and its extensions, and give
the formal definitions in Section II. In Section III we provide a
short tour of how FC can be restricted and extended, and how
this give us the “lenses” to evaluate formulas efficiently. We
then address how FC aligns with the LangSec principles (see
e. g. [3]). Finally, in Section VI, we show how we can put all
of this together to obtain a unifying framework for combining
parsers.

A Quick Overview of FC: The fundamental building
blocks of FC are concatenation terms of the form x

.
= α

where x is a variable and α is a string of terminal symbols and
variables. These concatenation terms are string equations (also
called word equations) which have been widely examined; for
example, see [4]–[7].

Variables in FC range over the factors (contiguous sub-
strings) of some finite input text and therefore we can use FC
to search for specific factors. For example, ∃x : x .

= banana
asks whether there exists some factor “banana”. Using first-
order logic connectives, we can build formulas in a modular
fashion. If we wanted to ask whether there are no factors
of the form banana, we simply negate the previous formula:
¬∃x : x .

= banana.
With the use of variables, we can generalize the search to

look for more “abstract” patterns. Consider

∃x, y, z : x .
= ayzay.

This formula asks whether there are two (non-overlapping)
occurrences of a factor that starts with an a symbol1.
FC-formulas define languages in a straightforward manner:

The set of all strings for which the formulas is true. We
reserve a special symbol s called the universe variable which
represents the whole (input) string. For example, if we assume
the terminal alphabet Σ = {a, b}, the formula

∃x : s .
= axax ∧ ∀y, z : ¬(x .

= yaz)

defines the language {abnabn | n ⩾ 0}. For some intuition,
the previous formula states that our whole string is axax for
some terminal string x, and for all factors y and z we do
not have x = yaz (in other words, x does not contain an a
symbol).

1To distinguish between terminal symbols and variables, we use a sans serif
typestyle for terminal symbols.

Having free variables (occurrences of variables that are not
bound by any quantifier) allows us to query a text and “return”
a relation. For example, “Return a unary relation of all factors
that do not contain an a symbol” can be expressed in FC as
φ(x) := ∀y, z : ¬(x .

= yaz).
As we discuss in Section III, FC has decidable model

checking. In the context of parsing, model checking represents
recognition: the part of the parser that accepts or rejects the
input. Moreover, relations extracted from the text by an FC-
formula can represent the syntactic structure of the input, and
thus, could be used as an alternative to a parse tree.

FC as a Logical Framework: FC may not be the ideal
logic in every scenario. For example, FC may not have the
expressive power to define what you wish to define (see [8]).
Alternatively, a particular use case may not require all the
features of FC, and a much more tractable subclass would be
sufficient. To combat this common negotiation between ex-
pressive power and tractability, we shall look three approaches;
constraints, fragments, and recursion.

Constraints are a concise way to increase the expressive
power of FC. For example, FC cannot define all the regular
languages.2 Therefore, (when necessary) we may introduce
regular constraints. That is, a new atomic formula of the form
x ∈̇γ where x is a variable and γ is a regular expression. This
states that x must be replaced with a string from the language
of γ (note that x must also be a factor of our input string).
If one wanted to test whether a string does not adhere to a
(simplified) email address specification, they could write

¬∃x, y, z : (s .
= x@ y . z) ∧ (x ∈̇ γ) ∧ (y ∈̇ γ) ∧ (z ∈̇ γ),

where @ and . are terminal symbols3 and γ is a regular
expression that only accepts strings that use alphanumeric
characters (the astute reader may have noticed that regular
constraints are not strictly necessary for this example). So far,
only regular constraints have been considered in the literature
for FC (see [1], [8], [9]), however, any arbitrary constraints
can be added to FC.

Adding constraints does not change the complexity of model
checking, assuming the constraint is efficient to evaluate (we
will discuss some examples of efficient constraints in Sec-
tion III). In fact, the addition of certain constraints leaves room
for some “engineering-style” optimizations (although this may
not improve the worst-case complexity).

For example, consider the FC-formula ∀x : (φ∧x∈̇C) where
φ is some formula and x∈̇C is some constraint. Now, if x∈̇C
only holds for very few factors, then we could evaluate φ only
for those x such that x ∈̇ C holds. Thus, constraints can be
seen as a way to “filter out” certain factors that do not need to
be considered. This leads us to using the notation ∀x ∈̇ C : φ
as an alternative to ∀x : (φ ∧ x ∈̇ C). Analogously, we adopt
the notation ∃x ∈̇ C : φ.

2A paper which proves this result is to appear at LICS 2025.
3In this example, we use . as a terminal symbol, not as a wildcard character

(as it is commonly used in regex engines). Wildcards and other features that
appear in implementations open up many further theoretical questions. Here,
we use regular expressions in the strict theoretical sense.

As with other logics, one can consider fragments of FC –
usually defined as a syntactic restriction. Consider a conjunc-
tive query fragment of FC: That is, FC-formulas built from
atomic formulas (x .

= α), conjunction (∧), and existential
quantification (∃). Although model checking for the conjunc-
tive query fragment of FC is NP-complete, we can draw upon
existing conjunctive query literature, such as acyclicity, to get
polynomial-time model checking [9].

Another fragment (considered in [1]) is the existential-
positive fragment of FC. Existential-positive FC (EP-FC for
short) extends FC conjunctive queries with disjunction (∨);
thus avoids negation and the universal quantifier which makes
things expensive [1]. Again, while model checking for EP-FC
is NP-complete, Freydenberger and Peterfreund [1] considered
EP-FC with bounded width which allows for polynomial-
time model checking. Of course, one can combine tractable
fragments of FC with constraints.

Recursion can be added to the model if further expressive
power is required. As examined in [10], FC-Datalog is a
variant of the query language Datalog for strings that extends
the conjunctive query fragment of FC with recursion in the
same way that Datalog extends first-order logic (see [11] for
more details). An FC-Datalog program is given by a set of
rules of the form

R(x1, . . . , xk) � φ1, φ2, . . . , φn,

where each φi is an FC atomic formula (i. e., x .
= α) or a

relation. For ease of notation we adopt the syntax used in
Datalog. Here x1, . . . , xk are free variables and all other vari-
ables from φ1, φ2, . . . , φn are bound by implicit existential
quantifiers. We also use “,” symbols to represent conjunction
(as opposed to non-recursive FC where ∧ is used). Without
the shorthand notation, the above rule would be

R(x1, . . . , xk) � ∃y1, . . . ym : φ1 ∧ φ2 ∧ · · · ∧ φn,

Initially, we set all the relations to the empty set, and then
iteratively apply a rule until all the relations stabilize. We use
the special output relation Ans. Thus, an FC-Datalog program
can define a relation or, if Ans has arity 0, a language.

Example 1 The FC-Datalog program:

Ans() � s
.
= yy, R(y);

R(x) � x
.
= ya, R(y);

R(x) � x
.
= yb, R(y);

R(x) � x
.
= ε.

defines the language {uu | u ∈ {a, b}∗}. See Example 10 for
an example execution of this program.

II. PRELIMINARIES

In this section, we give some notational conventions, and
formal definition of FC based on the definitions given in [1].
Those readers who are less interested in the formal details are
invited to skip over this section.

A. Basic Notation

Let Σ be a fixed and finite alphabet of terminal symbols,
with at least two elements. By Σ∗, we denote all finite strings
generated from elements of Σ. Note that Σ∗ contains the empty
string ε, that is, the string of length zero. A string t is a factor
of a string w, denoted t ⊑ w, if there exists the (potentially
empty) strings u and v such that w = utv. For some w ∈
Σ∗, we use |w| to denote its length. A relation is a set of
tuples each of which has the same number of components. The
number of components in each tuple of a relation is called the
arity of the relation.

B. Defining FC

Let X be an infinite alphabet of variable where Σ and X
do not share any elements. A substitution is a morphism4 σ :
(Σ∪X)∗ � Σ∗ where σ(a) = a, for all a ∈ Σ. In other words,
a substitution assigns each variable to a string from Σ∗.

We distinguish a variable s ∈ X called the universe variable
to represent some input string. We say that a substitution σ
is s-safe if σ(x) ⊑ σ(s) for all x ∈ X . In other words, σ is
s-safe if it maps every variable to a factor of σ(s).

Definition 2 (Syntax of FC) The set FC is defined recur-
sively as follows.

• (x
.
= α) ∈ FC for all x ∈ X and α ∈ (Σ ∪ X)∗.

• If φ,ψ ∈ FC, then
– (φ ∧ ψ) ∈ FC,
– (φ ∨ ψ) ∈ FC,
– ¬φ ∈ FC, and
– ∃x : φ ∈ FC and ∀x : φ ∈ FC for all x ∈ X \ {s}.

If the meaning is clear, we may add or omit parentheses.

Before defining the semantics of FC, we require the follow-
ing definition: For a substitution σ, a string u ∈ Σ∗, and a
variable x ∈ X , we write σx→u for the new substitution:

σx→u(z) :=

{
u, if z = x,
σ(z), otherwise.

That is, σx→u maps x to u, and for all other variables, σx→u

is the same as σ.
Next, let us now consider the semantics of FC. Informally,

for a s-safe substitution σ and a formula φ ∈ FC, we write
σ |= φ if σ satisfies φ.

Definition 3 (Semantics of FC) Let σ : (Σ ∪ X)∗ → Σ∗

be a s-safe substitution. We define |= recursively along the
syntactic definition of FC as follows:

• σ |= (x
.
= α) if σ(x) = σ(α),

• σ |= (φ ∧ ψ) if σ |= φ and σ |= ψ,
• σ |= (φ ∨ ψ) if σ |= φ or σ |= ψ,
• σ |= ¬φ if σ |= φ does not hold,
• σ |= ∃x : φ if σx→u |= φ for some u ⊑ σ(s),
• σ |= ∀x : φ if σx→u |= φ for all u ⊑ σ(s).

4A morphism is a function h : A∗ � B∗ where h(xy) = h(x) · h(y) for
all x, y ∈ A∗.

Informally, we can combine concatenation terms (x .
= α)

with conjunction (“and”), disjunction (“or”), negation (“not”)
and quantified variables (“for all” and “there exists”). Further-
more, each variable is mapped to a factor of the input string
ensuring that we only work with “finite models”.

Example 4 Consider the FC-formula

φ := ∃x : (s .
= ax) ∧ (s

.
= xa).

Let σ be a substitution, notice that since σ does not “change”
terminal symbols, we only need to look at how σ maps
variables to terminal strings. Suppose σ(s) = aaa and we wish
to know whether σ |= φ. From the definition of the semantics
of FC, we know that σ |= φ if there exists some u ⊑ aaa such
that σx→u |= (s

.
= ax) ∧ (s

.
= xa). Consider u = aa:

• σx→aa(s) = σx→aa(ax) = aaa, and
• σx→aa(s) = σx→aa(xa) = aaa.

Therefore, σ |= φ does indeed hold.

In order to be fully rigorous, the formal definitions of FC are
somewhat technical. However, assuming one has some famil-
iarity with first-order logic, FC-formulas could be considered
a natural and concise way to reason about strings.

C. Other Logics

FC uses the most natural operation on strings: concatena-
tion. This allows us to treat strings as strings, as opposed to
in other logics on strings such as monadic second order logic
(MSO) over a linear order, which treat strings as intervals of
positions. The authors believe that this makes FC-formulas
more natural, and thus easier to write and to interpret.

Example 5 In MSO, strings are encoded as a sequence of po-
sitions which are given terminal symbols by symbol predicates.
For example, the string ababa is encoded by two predicates
Ra = {1, 3, 5} and Rb = {2, 4}. That is,

1 2 3 4 5
a b a b a.

Then, MSO is a particular logic over the symbol predicates
and a total order relation <. For example, if we wanted to
write the specification “the string contains the factor ab” in
MSO, we would write something like:

∃x1, x2 :
(
Ra(x1) ∧Rb(x2) ∧ ¬∃x : (x1 < x ∧ x < x2)

)
.

Intuitively, this expresses “there is a position x1 that has a
letter a and a position x2 that has a letter b, and there is no
position x between them”.

In contrast to this, FC allows us to write ∃x : x .
= ab, which

states “there is a factor x that is ab”.

Furthermore, we can compare factors of unbounded length
in FC; this not possible in MSO (see [1] for a comparison
between FC and MSO). Moreover, we can define the whole
logic with lightweight definitions.

III. A TOUR THROUGH THE LANDSCAPE OF FC

Logics similar to FC have been considered from a theo-
retical point of view [13], and (more relevant to this article),
have been considered from a security point of view [4]. The
latter taking the form of constraint satisfaction – that is,
whether a combination (often given in a logical form) of string
constraints is satisfiable. For example, if we encode an attack
pattern as a logic formula φ, and encode some input handling
code as a logic formula ψ, then φ∧ψ is satisfiable whenever
the input handling code is susceptible to the attack pattern (we
refer to [4] for more details).

One of the main issues with this approach is the fact
that satisfiability is often computationally hard [5] or even
undecidable [14].

On the other hand, FC has a meaningful distinction between
model checking (does a formula hold for a specific input
string) and satisfiability (does a formula hold for any string).
Furthermore, due to the fact that variables range over the
factors of some finite input string, we have a finite domain
which makes model checking decidable [1].

Model Checking for FC: Formally, the model checking
problem for FC is defined as follows:

• Input: An FC-formula φ and a s-safe substitution σ.
• Question: Does σ |= φ?

As a convention, we assume the input substitution for the
model checking problem is only given for those variables that
appear in the input formula. This is to ensure our input is finite,
and only contains the relevant details. In terms of parsing,
model checking can be seen as a formally defined accept/reject
mechanism for recognition.

Algorithmically, we can approach model checking using
different “lenses”, depending on the structure of the formulas,
and these can have both top-down and bottom-up approaches.
Let us first consider a naive top-down approach: This can
be seen as a recursive algorithm, where if our formula is
∃x : φ (or ∀x : φ), then we loop over all factors check whether
replacing x by one (or all resp.) factor(s) results in φ being
satisfied. We can recurse down in a straightforward way until
we reach the atomic formulas (at which point we have values
for each of the variables).

A bottom-up approach would be to start with the atomic
formulas, and “build” a relation of satisfying substitutions
for each subformula. For example, if we have a relation of
satisfying substitutions for φ and for ψ, then taking the union
of them builds a relation of satisfying substitution for φ ∨ ψ.

Considering these approaches, it is clear that model check-
ing for FC is decidable, however, it is intractable:

Theorem 6 (Theorem 4.1 of [1]) Model Checking for FC is
PSPACE-complete.

A related (but distinct) problem to model checking is
enumeration:

• Input: An FC-formula φ and a string w ∈ Σ∗.
• Output: All s-safe substitutions σ such that σ(s) = w

and σ |= φ.

Again, as a convention, we assume the output substitutions
σ are only defined for those variables that appear in φ.
Enumeration outputs a relation over factors of the input text
and so can be seen as a way to “extract” information. In terms
of parsing, we break the whole string into more manageable
components (as is common with parsers).

Intuitively, model checking is the decision problem variant
of enumeration. In other words, since model checking is
computationally hard, we cannot hope for efficient enumer-
ation (in general). Therefore, we need to look at fragments
of the full logic. The field of Database Theory is rich with
fragments of first-order logic which have tractable model
checking and enumeration (see [15], [16] for starters). Many
such fragments come with a canonical (enumeration/model
checking) algorithm. Thus, not only is FC (and its variants) a
declarative logic, but it comes with a host of algorithms for
specific fragments.

One of way to make model checking for first-order logic
tractable is to limit the number of free variables (that is, an
occurrence of a variable that is not quantified). We say that
φ ∈ FC has bounded width if the maximum number of free
variables in any subformula is bounded by some constant.

Theorem 7 (Theorem 4.2 of [1]) If φ ∈ FC has bounded
width, then model checking can be done in polynomial time.
In fact, if n = |σ(s)|, and m is the size5 of φ, then deciding
σ |= φ can be solved in O(kmn2k) where k is the width of φ.

This is the same for general first-order logic (see, e.g., [15]).
For FC, we can “materialize” a table for each atomic formula
(x .

= α) – that is, enumerate all satisfying substitutions – and
then apply a bottom-up algorithm for first-order logic as usual.
Due to the fact that the width is bounded, materializing the
atomic formulas is not too expensive. Bounding a parameter
known as treewidth gives us bounded width (see [1]).

Another approach to getting tractable model checking is to
bound the quantifier rank (the nesting depth of quantifiers)
by a constant. Then, using a naive top-down approach, we
limit the number of “nested loops” that are required. This
again results in a fragment of FC with polynomial-time model
checking.

While these approaches are enough to get polynomial-time
model checking, they still may not be considered “efficient”.
One way to get more efficient algorithms is to limit the number
of factors that the formula needs to consider. For example, by
using constraints.

FC with Constraints: By treating strings as strings, we
can easily add arbitrary constraints. That is, instead of only
have terms of the form x

.
= α as atomic formulas, we

allow x ∈̇ R where R is any language representation (e.g.,
a context-free grammar, regular expression, etc.) This allows
us to express relations and languages that are not expressible
with FC without constraints (see [8]). Furthermore, as long
as the constraints can be evaluated efficiently, the addition of
such constraints does not affect any complexity results.

5Using any reasonable encoding.

Most commonly, we look at regular constraints, which are
additional atoms of the form x ∈̇ γ for a variable x and a
regular expression γ. For a s-safe substitution σ, we have
σ |= x ∈̇ γ if σ(x) ∈ L(γ). That is, x ∈̇ γ constrains x to
be replaced by a string that belongs to the language of γ. We
use FC[REG] to denote FC extended with regular constraints.
FC[REG] is strictly more expressive than FC, since FC cannot
express all the regular languages. Moreover, FC[REG] captures
the expressive power of generalized core spanners, a class
of the popular information extraction framework of document
spanners (see [1], [17]).

Analogously, we may consider constraints with higher
arities. For example, we could add a new atomic formula
len(x, y) to FC where, for a s-safe substitution σ, we have
that σ |= len(x, y) whenever the length of σ(x) is equal to the
length of σ(y).

We can also consider constrained quantifiers, constraints of
the form ∃x∈̇R : φ (or ∀x∈̇R : φ) for a variable x and a unary
relation symbol R. We have σ |= ∃x ∈̇ R : φ if σx 7→u |= φ
for some u ⊑ σ(s) where u ∈ R, and σ |= ∀x ∈̇ R : φ if
σx7→u |= φ for all u ⊑ σ(s) where u ∈ R.

Example 8 For this example, we consider a simple Delimiter-
Separated Value (DSV) file specification. Each value in our
file is an alphanumeric string, a record is a string of values
separated by a special # symbol. A DSV file is a string of
records separated by †. For example:

“FC#Logic † DFA#Automata†′′

is a DSV file in our specification. If we assume # is a comma,
and † is an “end of line” character, then our DSV file is a
CSV file.

Let A be the alphabet of alphanumeric characters, and let
Σ := A ∪ {†,#}. We can extract a unary relation of records
with the following FC[REG]-formula:

φrec(x) := ∃p, s :
(
(s

.
= pxs) ∧ (p ∈̇ ε ∪ Σ∗ †)

∧ (x ∈̇ (A∗#)∗A∗ †)
)
.

For intuition, we split our whole string s into some prefix
p, some content x, and some suffix s. We say that either p
is the empty string (which implies x is the first record), or
ends with †. Then, we say that x is made up of a string of
alphanumeric letters, separated by #, and ends with †.

Now, suppose we wished to check if there is a repeating
record. This can be done with the following FC[REG]-formula
∃y, x, z :

(
(y

.
= xzx) ∧ φrec(x)

)
. That is, there does exist a

record that appears in two places (as a prefix and suffix of y).
Alternatively, assume we have some constraint Rec such

that σ |= x ∈̇ Rec if σ(x) is a record (i.e., it replaces φrec(x)).
Then, we can write the previous formula with a constrained
quantifier: ∃x ∈̇ Rec :

(
∃y, z : y .

= xzx
)
. Thus, instead of

naively enumerating all factors for y, x, and z; and then
determining whether (y

.
= xzx) ∧ φrec(x) holds, we instead

enumerate all records and check whether y .
= xzx holds (for

some y and z).

Thus, using constrained quantifiers, leads to potential opti-
mizations. Instead of considering all the factors (quadratically
many in the length of σ(s)), we need only need to consider
those factors that belong to R.

The technique illustrated in Example 8 of splitting the
input string into components, and testing constraints on those
components is applicable in a variety of different situations.
For example, an HTTP request is split into the request line,
optional headers, an empty line, and then the body. Therefore,
one could adapt Example 8 to deal with the HTTP protocol
syntax.

FC-CQ: Conjunctive queries are a central topic in
database theory (see [18]). They can be thought of as a
fragment of first-order logic that use only conjunction and
existential quantification. We denote FC-CQ as the conjunctive
query fragment of FC. Even for this strict restriction of FC,
model checking is computationally hard:

Theorem 9 (Theorem 4 of [19]) Model checking for FC-CQ
is NP-complete, and remains NP-hard even if the input string
is of length one.

However, in the database setting, a fragment known as
acyclic conjunctive queries allows for polynomial-time model
checking. A conjunctive query is acyclic if there exists a so-
called join tree for that conjunctive query. A join tree is a
tree-based data structure where each node of the tree is some
atomic formula that appears in the conjunctive query. Further-
more, without going into too many details, each variable must
only appear in one connected subtree. Once one has a join tree
for a conjunctive query, they can apply Yannakakis’ algorithm
for efficient model checking (see [16]).

Unfortunately, we cannot immediately apply Yannakakis’
algorithm for FC-CQ. This is because each atomic formula
x
.
= α may have an exponential number of tuples. Therefore,

Freydenberger and Thompson [9] treat each concatenation
term x

.
= α as shorthand for a conjunction of binary con-

catenation terms x .
= yz where x, y, and z are variables. For

example, x .
= y1y2y1y1 could be considered shorthand for

(x
.
= zz) ∧ (z

.
= y1y2).

Freydenberger and Thompson [9] gave an algorithm which
is given an FC-CQ, and (in polynomial time) rewrites it into
an equivalent acyclic FC-CQ only using binary concatenation
terms, or determines that this cannot be done for the given
input and the particular type of rewriting6. Once we have
an acyclic FC-CQ using binary concatenation terms, we can
materialize the relations for each atomic formula in polynomial
time, and then using Yannakakis’ algorithm [16] as usual.

FC-Datalog: Extending FC-CQ with recursion gives us
FC-Datalog, a variant of the relational query language Datalog
for querying strings.

6The authors believe that the more general problem of given an FC-CQ,
does there exist an equivalent acyclic FC-CQ using only binary concatenation
terms is likely computationally hard or even undecidable.

Example 10 Let P be the FC-Datalog program defined in
Example 1. Here we give an example top-down execution of
P on the string abab.

1) As it is the only rule that contains the output symbol,
we first apply the rule Ans() � s

.
= yy, R(y). Since

σ(s) = abab, we have σ(y) = ab which is passed into
the relation R.

2) Next, we apply R(x) � x
.
= yb, R(y). As we have

σ(x) = ab, then σ(y) = a. We then recurse on this
value of σ(y).

3) Now, we apply R(x) � x
.
= ya, R(y). We then recurse

on σ(y) = ε.
4) We then can apply R(x) � x

.
= ε. As this holds we

accept.

Adding recursion allows us to exactly express the complex-
ity class P. We say a logic captures a complexity class C if
the class of languages it expresses is exactly C. Note that if
a logic captures a complexity class C, its data complexity is
C (that is, the model checking problem where we assume the
logic formula is fixed, and some string is the input).

Theorem 11 (Theorem 4.11 of [1]) FC-Datalog captures P.

As P is not considered efficient for data complexity, [10]
identifies more efficient fragments of FC-Datalog. In an
FC-Datalog rule, we call the part to the left of the � the
rule’s head and the part to the right of the � the rule’s body.
Informally, Linear FC-Datalog restricts the bodies of rules
such that they may only contain one atom with a relation
symbol that is mutually recursive with the head relation
symbol. One Letter Lookahead FC-Datalog restricts the string
equations to only check one letter at a time, and this allows
us to efficiently check for determinism. We refer to [10] for
specific details on these FC-Datalog fragments.

Theorem 12 (Theorems 3.4 and 3.17 of [10]) Linear
FC-Datalog captures NLOGSPACE. Deterministic One Letter
Lookahead FC-Datalog captures LOGSPACE.

In [10], deterministic One Letter Lookahead is abbreviated
to DOLLA FC-Datalog. In fact, [10] introduces a whole range
of fragments that capture LOGSPACE, and in particular one
called DOLLA+ FC-Datalog. The example program given in
Example 1 is a DOLLA+ FC-Datalog program.

Furthermore, as LOGSPACE is closed under complement,
we can also add stratified negation without affecting the
complexity. In [10], it was also shown that we can view such
FC-Datalog programs as generalised two-way multiheaded
finite automata, a more flexible model that permits performing
nonregular string computations in the transitions on top of the
usual automata functionality.

When parsing in practice, the parse tree itself is also often
useful. As in the relational setting, we could alternatively
define the semantics of FC-Datalog in the proof theoretic way
using so-called proof trees. As shown in Section 12.4 of [18],
Datalog proof trees have a strong connection to derivation trees

in context-free languages. As we are working on strings, we
can therefore obtain parse trees for FC-Datalog programs.

Static Analysis: Unfortunately, many static analysis prob-
lems such as satisfiability and equivalence are difficult for FC,
and even for restrictive fragments like FC-CQ (see [1], [19]
for details). Therefore, an important direction for future re-
search is investigating fragments where these problems be-
come tractable. On the other hand, we will discuss in Section
VI how we can see FC and its extensions as a framework for
combining parsers, and use this to obtain weak equivalence.

IV. FC AS A REPLACEMENT FOR REGEX

Bell, Day, and Freydenberger [10] show how fragments of
FC-Datalog can simulate classes of regex—that is, regular
expressions with a backreference operator that matches a
repetition of a previously matched string. In particular, they
show how so-called deterministic regex can be expressed
in DOLLA+ FC-Datalog. Deterministic regex can express
nonregular languages, and have a membership problem that
is almost as efficient as deterministic regular expressions
(see [20]).

As found by [21], regex are commonly seen as difficult
to write and interpret. Furthermore, the difficulty of using
regex can cause developers to run into two main issues: porta-
bility, where reused regex or regex composed from existing
expressions have unexpected behavior, and security issues,
such as Regular expression Denial of Service (ReDoS), as
the worst-case time complexity in most regex engines can
be exponential. Both of these problems are often overlooked
(see [21]). The authors argue that FC and FC-Datalog could
be used as an alternative to regex as due to their declarative
nature, FC-formulas are simpler and thus easier to use. When
reusing FC-formulas, we do so explicitly. The compositionality
of FC means we have independent components that can be
reused, verified and tested. We can then modify FC-formulas
more simply. For example, adding a further condition φ2 to an
existing formula φ1 can be done with φ3 := φ1 ∧ φ2. This is
not so simple in regex. Furthermore, in terms of security risks,
by being able to test the components that we “plug” together,
we can thus test the time complexity incrementally, which is
much more difficult with regex.

Example 13 For a binary alphabet {a, b}, we can express
all strings that do not have bab as a factor with the regex
a∗(bb∗aaa∗)∗b∗(a | ε). As the alphabet grows, so does the
regex. For arbitrary alphabets, we can express this property
with the FC-formula ¬∃x : x .

= bab.

V. LANGUAGE-THEORETIC SECURITY AND FC
A common attack is to exploit the inadequate input val-

idation of parsers, which should filter out malicious input
and transform the valid input to an appropriate representation
for the rest of the program. Unfortunately, the set of valid
inputs is often not explicitly specified, and so malicious input
may be validated by the parser, rendering it insecure (see e.g.
[3]). LangSec (Language-Theoretic Security) is a paradigm for
defending against these attacks that proposes defining the set

of valid inputs as a formal language and building a recognizer
for this input language to act as the parser. As in [3], the core
principles of LangSec can be expressed as the following:

1) Full recognition before processing: The valid input
should be defined as a formal language, and the program
should decide the input before performing any non-
parsing computation.

2) Principle of least expressiveness: The grammar used for
defining the valid inputs should be only as high in the
Chomsky hierarchy as necessary and not any higher.

3) Principle of parser equivalence: Any two different
parsers that decide the same language should be func-
tionally equivalent.

The authors believe that a declarative model (such as FC and
its extensions) has clear advantages for verification, compared
to a sequential or computational machine such as a grammar
or automaton. By formally defining a language based on
the desired outcome, we can simplify the writing process
and mitigate against unintended consequences that arise when
defining a specific implementation. Additionally, by presenting
the unsatisfied subformulas to users, FC could also provide
less complex error messaging than for grammar-based models.
Also, a declarative model allows for more concise formulas
than a computational model, which often can be easier to write
and interpret. More precisely, the size blow up from an FC-
formula to an equivalent regular expression is not bounded
by any recursive function (Theorem 4.8 of [1]), even for the
conjunctive query fragment (see Theorem 8 of [19]).

Example 14 Example 13 shows an FC-formula for expressing
that a string does not contain the factor bab. Like for regex
in Example 13, it is more complex to express this using a
grammar. For a binary alphabet {a, b} we can use:

S � aS; A � aB;

S � bA; A � bA;

S � ε; B � aS;

A � ε; B � ε.

Again, as the alphabet grows, so does the grammar.

FC and its extensions align directly with the full recognition
before processing principle; in FC and its extensions we
define formal languages and we have optimizations for model
checking, the problem that is exactly deciding the validity of
the input.

Furthermore, we are not limited to “pure FC”, as we have
a whole framework of natural fragments and extensions sur-
rounding it (as we discussed in Section III). We can therefore
also apply the principle of least expressiveness in choosing
which fragment or extension to use.

The principle of parser equivalence for FC and its extensions
is more difficult. From [22], the equivalence problem for non-
deterministic context-free grammars is undecidable, however,
[23] showed that this problem is decidable for deterministic
context-free languages. It is therefore argued by [2], [3],
[24] that ideally parsers should not be more expressive than

deterministic context free, the class of languages accepted
by the class of deterministic pushdown automata, as then
can be checked if two parsers are functionally equivalent.
Unfortunately, the equivalence problem is undecidable for FC
(see [1]), even for the conjunctive query fragment [19].

Therefore, an important area for future work is to consider
fragments that have decidable equivalence. However, there are
still cases where more complex data formats are required.
Anantharaman [3] states that in such cases, the solution to
this problem is visually comparing grammars. The authors
argue that visually comparing declarative models such as FC
and its extensions is significantly simpler than computational
models such as grammars or automata. Furthermore, as we
shall discuss in Section VI, we can use FC and its extensions
as a unifying framework for combining parsers. As such, we
have a weak equivalence, where we can ‘plug-in’ relations
defined elsewhere (such as by other formulas or from parsing
another model), and thus need only decide equivalence of these
relations.

VI. CONCLUSIONS AND FUTURE WORK

Using FC and its extensions, we have a declarative model for
parsing, where formulas come with different “lenses” for how
they can be evaluated efficiently, depending on the particular
fragment being considered. We can then combine these various
fragments of FC as well as other parsers into one unifying
framework. We can see any formula as defining a relation that
we can use as a subformula in other formulas. Furthermore,
relation symbols can be placeholders for subroutines, such as
verifying a precomputed relation. This allows us to define a
formula, from a particular fragment if we want performance
guarantees, which can combine relations from a number of
different sources. Such a relation could be defined by;

• another FC-formula or subformula,
• an FC-Datalog program (again from a restricted class if

we want performance guarantees),
• a parser from another model (such as a context-free

grammar),
• an existing relational database,
• a by-hand implementation (for a relation such as equal

length that is efficient to verify).
As such, we can see the original formulas as unifying multiple
parsers into a single text verifier. The ability to have modular
"black box" components that can be swapped, combined and
verified is much more natural in FC than for computational
models such as automata or grammars. Moreover, from this we
gain a weak equivalence, we need only to decide the equiva-
lence of our subrelations, aligning FC more with the LangSec
principle of parser equivalence discussed in Section V. The
modularity and compositionality of FC and its extensions also
allow us to have a further hierarchy of expressivity, which is
relevant to the principle of least expressiveness also discussed
in Section V.

Along with preprocessing optimizations such as RMQ
(range minimum query) data structures and LCP (longest
common prefix) arrays, using naive brute force has led to a

promising initial prototype implementation for FC. We are thus
currently working on three main directions:

• Investigating for further fragments of FC and its exten-
sions where static analysis problems such as equivalence
and satisfiability become tractable.

• Optimizing evaluation algorithms using techniques from
database theory. Our approaches here range simply
rewriting a formula using standard logical equivalences
to creating query plans that express the order in which to
execute operations.

• Building a fully-fledged implementation for FC and its
extensions, including an implementation of the optimizer
discussed in the previous point.

So far, FC has only been studied from a theoretical point of
view. Moving forward, we aim to investigate the three research
directions from both a theoretical and practical perspective.
In addition to general optimizations, there are likely to be
application-specific optimizations, offering the ability to tailor
the general FC framework for particular use cases.

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their
suggestions and feedback. This work was funded by the
EPSRC grant EP/T033762/1. For the purpose of open access,
the author(s) has applied a Creative Commons Attribution (CC
BY) license to any Accepted Manuscript version arising.

DATA AVAILABILITY

No data was analysed, captured or generated for this work.

REFERENCES

[1] D. D. Freydenberger and L. Peterfreund, “The Theory of Concatenation
over Finite Models,” in Proc. ICALP 2021, 2021, pp. 130:1–
130:17. [Online]. Available: https://drops.dagstuhl.de/entities/document/
10.4230/LIPIcs.ICALP.2021.130

[2] L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Locasto, “Security
Applications of Formal Language Theory,” IEEE Syst. J., pp. 489–500,
2013. [Online]. Available: https://ieeexplore.ieee.org/document/6553401

[3] P. Anantharaman, “Protecting systems from exploits using language-
theoretic security,” Ph.D. dissertation, Dartmouth College, USA, 2022.
[Online]. Available: https://digitalcommons.dartmouth.edu/dissertations/
80

[4] A. W. Lin and P. Barceló, “String solving with word equations
and transducers: towards a logic for analysing mutation XSS,”
in Proc. POPL 2016, 2016, pp. 123–136. [Online]. Available:
https://dl.acm.org/doi/10.1145/2914770.2837641

[5] W. Plandowski, “Satisfiability of word equations with constants is
in PSPACE,” J. ACM, pp. 483–496, 2004. [Online]. Available:
https://dl.acm.org/doi/10.1145/990308.990312

[6] J. Karhumäki, F. Mignosi, and W. Plandowski, “The expressibility of
languages and relations by word equations,” J. ACM, pp. 483–505, 2000.
[Online]. Available: https://dl.acm.org/doi/10.1145/337244.337255

[7] Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, J. Dolby,
and X. Zhang, “Effective Search-Space Pruning for Solvers of
String Equations, Regular Expressions and Length Constraints,”
in Proc. CAV 2015, 2015, pp. 235–254. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-21690-4_14

[8] S. M. Thompson and D. D. Freydenberger, “Generalized core
spanner inexpressibility via Ehrenfeucht-Fraïssé games for FC,”
Proc. ACM Manag. Data, pp. 1–18, 2024. [Online]. Available:
https://doi.org/10.1145/3651143

[9] D. D. Freydenberger and S. M. Thompson, “Splitting Spanner Atoms:
A Tool for Acyclic Core Spanners,” in Proc. ICDT 2022, 2022, pp. 6:1–
6:18. [Online]. Available: https://doi.org/10.4230/LIPIcs.ICDT.2022.10

[10] O. M. Bell, J. D. Day, and D. D. Freydenberger, “FC-Datalog as
a Framework for Efficient String Querying,” in Proc. ICDT 2025,
2025, pp. 29:1–29:18. [Online]. Available: https://doi.org/10.4230/
LIPIcs.ICDT.2025.29

[11] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted
to know about Datalog (and never dared to ask),” IEEE Trans.
Knowl. Data Eng., pp. 146–166, 1989. [Online]. Available: https:
//ieeexplore.ieee.org/document/43410

[12] H. Straubing, Finite automata, formal logic, and circuit complexity.
Springer Science & Business Media, 2012.

[13] W. V. Quine, “Concatenation as a Basis for Arithmetic,” J. Symb. Log.,
pp. 105–114, 1946. [Online]. Available: https://www.jstor.org/stable/
2268308?seq=1

[14] V. G. Durnev, “Undecidability of the positive ∀∃3-theory of a free
semigroup,” Sib. Math. J., pp. 917–929, 1995. [Online]. Available:
https://doi.org/10.1007/BF02112533

[15] I. Adler and M. Weyer, “Tree-Width for First Order Formulae,”
in Proc. CSL 2009, 2009, pp. 71–85. [Online]. Available: https:
//doi.org/10.1007/978-3-642-04027-6_8

[16] M. Yannakakis, “Algorithms for acyclic database schemes,” in
Proc. VLDB 1981, 1981, pp. 82–94. [Online]. Available: https:
//dl.acm.org/doi/10.5555/1286831.1286840

[17] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren, “Document
Spanners: A Formal Approach to Information Extraction,” J. ACM,
2015. [Online]. Available: https://doi.org/10.1145/2699442

[18] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995. [Online]. Available: http://webdam.inria.fr/Alice/

[19] S. M. Thompson and D. D. Freydenberger, “Languages Generated
by Conjunctive Query Fragments of FC[REG],” Theory Comput.
Syst., pp. 1–43, 2024. [Online]. Available: https://doi.org/10.1007/
s00224-024-10198-4

[20] D. D. Freydenberger and M. L. Schmid, “Deterministic regular
expressions with back-references,” J. Comput. Syst. Sci., vol. 105, pp. 1–
39, 2019. [Online]. Available: https://doi.org/10.1016/j.jcss.2019.04.001

[21] L. G. Michael, J. Donohue, J. C. Davis, D. Lee, and F. Servant, “Regexes
are Hard: Decision-Making, Difficulties, and Risks in Programming
Regular Expressions,” in Proc. ASE 2019, 2019, pp. 415–426. [Online].
Available: https://ieeexplore.ieee.org/document/8952499

[22] J. E. Hopcroft, “On the equivalence and containment problems for
context-free languages,” Math. Syst. Theory, pp. 119–124, 1969.
[Online]. Available: https://doi.org/10.1007/BF01746517

[23] G. Sénizergues, “The Equivalence Problem for Deterministic Pushdown
Automata is Decidable,” in Proc. ICALP 1997, 1997. [Online].
Available: https://api.semanticscholar.org/CorpusID:33023429

[24] F. Momot, S. Bratus, S. M. Hallberg, and M. L. Patterson, “The
Seven Turrets of Babel: A Taxonomy of LangSec Errors and How to
Expunge Them,” in SecDev 2016, 2016, pp. 45–52. [Online]. Available:
https://ieeexplore.ieee.org/document/7839788

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.130
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.130
https://ieeexplore.ieee.org/document/6553401
https://digitalcommons.dartmouth.edu/dissertations/80
https://digitalcommons.dartmouth.edu/dissertations/80
https://dl.acm.org/doi/10.1145/2914770.2837641
https://dl.acm.org/doi/10.1145/990308.990312
https://dl.acm.org/doi/10.1145/337244.337255
https://link.springer.com/chapter/10.1007/978-3-319-21690-4_14
https://doi.org/10.1145/3651143
https://doi.org/10.4230/LIPIcs.ICDT.2022.10
https://doi.org/10.4230/LIPIcs.ICDT.2025.29
https://doi.org/10.4230/LIPIcs.ICDT.2025.29
https://ieeexplore.ieee.org/document/43410
https://ieeexplore.ieee.org/document/43410
https://www.jstor.org/stable/2268308?seq=1
https://www.jstor.org/stable/2268308?seq=1
https://doi.org/10.1007/BF02112533
https://doi.org/10.1007/978-3-642-04027-6_8
https://doi.org/10.1007/978-3-642-04027-6_8
https://dl.acm.org/doi/10.5555/1286831.1286840
https://dl.acm.org/doi/10.5555/1286831.1286840
https://doi.org/10.1145/2699442
http://webdam.inria.fr/Alice/
https://doi.org/10.1007/s00224-024-10198-4
https://doi.org/10.1007/s00224-024-10198-4
https://doi.org/10.1016/j.jcss.2019.04.001
https://ieeexplore.ieee.org/document/8952499
https://doi.org/10.1007/BF01746517
https://api.semanticscholar.org/CorpusID:33023429
https://ieeexplore.ieee.org/document/7839788

	Introduction
	Preliminaries
	Basic Notation
	Defining FC
	Other Logics

	A tour through the landscape of FC
	FC as a Replacement for Regex
	Language-Theoretic Security and FC
	Conclusions and future work
	References

