Parsing with the Logic FC

Owen M. Bell Sam M. Thompson Dominik D. Freydenberger

Loughborough University, UK

LangSec 2025

i1 M Loughborough
9 University

Background: A Brief History of FC

Original Motivation

Logic and Databases Information Extraction.

m SQL is ‘syntactic sugar’ for First Order Logic (FO). K ¥=e

m FC is to querying strings what FO is to querying

. m Studied in database theory.
relational structures.

m ‘Lenses’ for efficient evaluation (using

=0 vs Oiher S Leges techniques from database theory).

m Various tractability criteria.

m Treats strings as strings, not sequences of positions. : g : 20
m Various extensions to increase expressivity.

m Can test the equality of two strings.

m Makes writing queries “user friendly"”. FC for LangSec

A framework for declarative input-handling.

1/15

What Is FC?

FC

The Fini I i f the th f
m The Finite model version of the theory o ot (2 = SPWV = LangSec).

Concatenation.

m Finite .model sen*!antlcs: c?ur universe” is all The Model Checking Problem
substrings of an input string s.

m Does a formula hold for an input string?

Defining FC m In context of parsing: recognition.

m String Equations z = «
= z: variable, The Finite Model is Crucial

m o string of constants and variables.
m Combine with: A, Vv, =, 3,V

®m and, or, not, exists, for all.

m Infinite: Model checking is undecidable.
m Finite: Model checking is decidable.

2/15

Defining Formal Languages in FC

Language of a formula Example 3

All strings for which the formula is true. @3 :=3z: 5 = arax A Vy, 2: ~(x = yaz).
m L(p3) = ab"ab” (for ¥ = {a,b}).

Example 1

1 = —3dz: x = bab. Returning a Query Result Instead

m L(¢p7): all strings that do not contain bab. By having free (unbound) variables.

Example 2 Modifying Example 2
po =T, y: T = yy. o () = Fy: x = yy.
m L(ps): all stings that contain a square m Return all substrings that are squares.

3/15

Lenses for Model Checking

Model Checking for FC is PSPACE-complete.

m Recursive algorithm. m Starting from atomic formulas.

m Every quantifier is a loop. m Build a relation for each subformula.

m Until we reach atomic formulas.

Bottom-Up Lens

 Formula Width
= Quantifier Rank (QR) m Max number of free variables in a subformula.
= Nesting depth of quantifiers. m Bounded treewidth — Bounded width.
m Bounded QR: PTIME model checking. m Bounded width: PTIME model checking.

4/15

Another Fragment and Lens

Conjunctive Queries
m A central topic of database theory. Another Lens

Use only A and .
- ny 4 m Acyclicity

m Does the FC-CQ have a join tree (a tree
FC-CQ representation where each variable appears
only in one connected subtree)?

m Acyclic FC-CQ: PTIME model checking.

Conjunctive Queries in FC.

Model checking for FC-CQ is NP-complete.

5/15

Extending Expressive Power: Constraints

FC on its own may not have enough expressive
power in certain use cases.

Regular Constraints

mrcy

Constraints

m Concise ways of increasing power. .
C Yy gp m x: variable,

m As we treat string as strings, we can easily m 7: regular expression.

add arbitrary constraints. m = represents a member of £(7).

= Additional atomic formulas z € R for a
language representation R.

FC[REG]

Complexity m Strictly more expressive than FC.

m Captures generalized core spanners, a

As long as the constraints can be evaluated > ! i
popular information extraction framework.

efficiently, adding constraints does not affect
any complexity results.

6/15

More on Constraints

Constrained Quantifiers

mdzé€Rand Vz ER

. m x: variable,
Length Constraints = R: relation.
m len(z,y). m “Engineering” optimization.
m The images of and y have the same length. m If the constraint holds for only a small

number of substrings, then we can evaluate
the rest of the formula on only these.

m A mechanism for ‘filtering out’ substrings.

7/15

Even More Expressive Power: Recursion

FC-Datalog

FC-Datalog program @
m Extends FC-CQ with recursion. = =

m FC analog of Datalog (a relational query

Ans() « s =yz, E(y,2);
language).

E@@,y«xz=¢ y=¢

E(z,y) « v =au, y=bv, E(u,v).

Implementing Context Free Grammars for NLP. L(Q) ={a"b" | n € N}.

Complexity

m We can define FC-Datalog using proof trees. m Captures PTIME.

m And therefore obtain parse trees for m Model checking: EXPTIME-complete.
FC-Datalog programs.

8/15

Efficient Recursion - Fragments of FC-Datalog
Deterministic One Letter Lookahead+ (DOLLA+)

m Captures LOGSPACE. m Not bound by left-to-right parsing.

m Can deterministically express context-free

Strictly Decreasing (SD) frlguageé tl_an%)tgies not accepted by a
eterministic 5

SD FC-Datalog Program @’

m Model checking: linear time.

DOLLA+ FC-Datalog as Generalized Automata

Ans() « R(s);

m Relation: State, 0)

. R(z) « x = ¢
= Rule: Transition, .

. . R(z) «x=a; forallaeX,
m String variable: Head,)
i R(x) « x =aya, forallaecX.

m Heads read words instead of letters,
m Nonregular string computations in transitions. L(Q') is the palindrome language.

9/15

Simulating a Class of Regex

T ——
y={(x: (avb)t) -d =z

m Regular expressions with back-references.
3 P m Matches all words udu where u € {a,b}T.

m (z:) saves the string matched by 7 in the
memory .

Example Noneterministic Regex
v = (z: (aVvb)t) .
Deterministic Regex (DRX) m Matches all words uu where u € {a,b}*.

m Regex who.se. e>.<tended Glushkov automaton Trulain: DK i e Dhmlaz
are deterministic.

We can simulate deterministic regex in
SD FC-Datalog (linear time model checking).

m z recalls the saved string.

m Can define nonregular languages.

10/15

FC and LangSec

LangSec Core Principles

@ Valid input defined as formal language.
® Full recognition before processing.
© Principle of least expressiveness.

O Principle of parser equivalence.

FC and These Principles

@ FC (and its extensions) define/accept formal
languages.

® FC has optimizations for model checking:
deciding input validity (recognition).

©® The natural restrictions and extensions to FC
give us a framework with an expressivity
hierarchy.

® More difficult. Equivalence is undecidable,
even for for FC-CQ.

Area for Future Work

Fragments with decidable equivalence.

11/15

A Declarative Model for LangSec

FC vs Computational Machines

Example Grammar G

m Simpler writing process. . .
s e m L(G): All strings that do not contain bab.

C itigat inst intended
- U RS Sl il = For binary alphabet {a,b}:

consequences arising when defining a specific

implementation. S — aS; A — aB;
m Provide clearer error messaging by presenting S — bA; A - DA,

unsatisfied subformulas to users. S = ¢ B - aS;
m More concise. The size blow up from an FC A e Boe¢.

formula to an equivalent regular expression is

- i m As the alphabet grows, so does the grammar.
not bounded by any recursive function.

m Easier to visually compare in cases where
complex data formats are required (so
equivalence cannot be checked). —dz: z = bab.

Equivalent FC formua

12/15

FC vs Regex

FC as a Replacement for Regex
Regex Issues

m Declarative formulas easier to write and

m Difficult to write and interpret. interpret.

m Portability. m Explicit reuse and compositionality of FC

m Security (ReDoS - Regular expression Denial formulas makes portability much simpler.
of Service). m Compositionality of components mitigates

against ReDoS issues.

13/15

A Framework for Combining Parsers

FC Compositionality A Unifiying Framework

m Every formula defines a relation. m For combining multiple parsers into a single
m These relations can be used in other text verifier.
formulas. m Modular components - much more natural in

] FC than for computational models.
We can also use relations from other sources.

Some Example External Relation Sources Weak Equivalence

= Parsers from other models. m Need only to decide equivalence of our
m An existing relational database. subrelations.
m a by-hand implementation (for a relation m Further aligns FC with the LangSec principle

that is efficient to verify). of parser equivalence.

14/15

Conclusions and Next Steps

Next Steps: Three Main Directions
m Investigating for further fragments of FC and

its extensions where static analysis problems

m FC: a declarative logic for recognition. X
such as equivalence become tractable.

m Efficient model checking using lenses (that

tell us which algorithm to use). m Optimizing evaluation algorithms -

: i “engineering”.
m Natural fragments and extensions with

el properics m Building a fully-fledged implementation for

. . . FC and its extensions, including such an

m Aligns with LangSec core principles. i
m A framework for combining parsers.

From both theoretical and practical

perspectives.

Thank You!

Any Questions?

15/15

