
Parsing with the Logic FC

Owen M. Bell Sam M. Thompson Dominik D. Freydenberger

Loughborough University, UK

LangSec 2025



Background: A Brief History of FC

Logic and Databases

SQL is ‘syntactic sugar’ for First Order Logic (FO).

FC is to querying strings what FO is to querying
relational structures.

FC vs Other String Logics

Treats strings as strings, not sequences of positions.

Can test the equality of two strings.

Makes writing queries “user friendly”.

Original Motivation

Information Extraction.

Work on FC

Studied in database theory.

‘Lenses’ for efficient evaluation (using
techniques from database theory).

Various tractability criteria.

Various extensions to increase expressivity.

FC for LangSec

A framework for declarative input-handling.

1 / 15



What Is FC?

FC

The Finite model version of the theory of
Concatenation.

Finite model semantics: our “universe” is all
substrings of an input string s.

Defining FC

String Equations x
.
= α

x: variable,
α: string of constants and variables.

Combine with: ∧, ∨, ¬, ∃, ∀
and, or, not, exists, for all.

Example

∃x : (x .
= SPW ∨ x

.
= LangSec).

The Model Checking Problem

Does a formula hold for an input string?

In context of parsing: recognition.

The Finite Model is Crucial

Infinite: Model checking is undecidable.

Finite: Model checking is decidable.

2 / 15



Defining Formal Languages in FC

Language of a formula

All strings for which the formula is true.

Example 1

φ1 := ¬∃x : x .
= bab.

L(φ1): all strings that do not contain bab.

Example 2

φ2 := ∃x, y : x .
= yy.

L(φ2): all stings that contain a square

Example 3

φ3 := ∃x : s .
= axax ∧ ∀y, z : ¬(x .

= yaz).

L(φ3) := abnabn (for Σ = {a, b}).

Returning a Query Result Instead

By having free (unbound) variables.

Modifying Example 2

φ2′(x) := ∃y : x .
= yy.

Return all substrings that are squares.

3 / 15



Lenses for Model Checking

Theorem

Model Checking for FC is PSPACE-complete.

Top-Down

Recursive algorithm.

Every quantifier is a loop.

Until we reach atomic formulas.

Top-Down Lens

Quantifier Rank (QR)

Nesting depth of quantifiers.

Bounded QR: PTIME model checking.

Bottom-Up

Starting from atomic formulas.

Build a relation for each subformula.

Bottom-Up Lens

Formula Width

Max number of free variables in a subformula.

Bounded treewidth � Bounded width.

Bounded width: PTIME model checking.

4 / 15



Another Fragment and Lens

Conjunctive Queries

A central topic of database theory.

Use only ∧ and ∃.

FC-CQ

Conjunctive Queries in FC.

Theorem

Model checking for FC-CQ is NP-complete.

Another Lens

Acyclicity

Does the FC-CQ have a join tree (a tree
representation where each variable appears
only in one connected subtree)?

Acyclic FC-CQ: PTIME model checking.

5 / 15



Extending Expressive Power: Constraints

FC on its own may not have enough expressive
power in certain use cases.

Constraints

Concise ways of increasing power.

As we treat string as strings, we can easily
add arbitrary constraints.

Additional atomic formulas x ∈̇R for a
language representation R.

Complexity

As long as the constraints can be evaluated
efficiently, adding constraints does not affect
any complexity results.

Regular Constraints

x ∈̇ γ

x: variable,
γ: regular expression.

x represents a member of L(γ).

FC[REG]

Strictly more expressive than FC.

Captures generalized core spanners, a
popular information extraction framework.

6 / 15



More on Constraints

Length Constraints

len(x, y).

The images of x and y have the same length.

Constrained Quantifiers

∃x ∈̇R and ∀x ∈̇R

x: variable,
R: relation.

“Engineering” optimization.

If the constraint holds for only a small
number of substrings, then we can evaluate
the rest of the formula on only these.

A mechanism for ‘filtering out’ substrings.

7 / 15



Even More Expressive Power: Recursion

FC-Datalog

Extends FC-CQ with recursion.

FC analog of Datalog (a relational query
language).

Motivation

Implementing Context Free Grammars for NLP.

Parse Trees

We can define FC-Datalog using proof trees.

And therefore obtain parse trees for
FC-Datalog programs.

FC-Datalog program Q

Ans() � s
.
= yz, E(y, z);

E(x, y) � x
.
= ε, y

.
= ε;

E(x, y) � x
.
= au, y

.
= bv, E(u, v).

L(Q) := {anbn | n ∈ N}.

Complexity

Captures PTIME.

Model checking: EXPTIME-complete.

8 / 15



Efficient Recursion - Fragments of FC-Datalog

Deterministic One Letter Lookahead+ (DOLLA+)

Captures LOGSPACE.

Strictly Decreasing (SD)

Model checking: linear time.

DOLLA+ FC-Datalog as Generalized Automata

Relation: State,

Rule: Transition,

String variable: Head,

Heads read words instead of letters,

Nonregular string computations in transitions.

Benefits

Not bound by left-to-right parsing.

Can deterministically express context-free
languages languages not accepted by a
deterministic PDA.

SD FC-Datalog Program Q′

Ans() � R(s);

R(x) � x
.
= ε;

R(x) � x
.
= a; for all a ∈ Σ,

R(x) � x
.
= aya, for all a ∈ Σ.

L(Q′) is the palindrome language.

9 / 15



Simulating a Class of Regex

Regex

Regular expressions with back-references.

⟨x : γ⟩ saves the string matched by γ in the
memory x.

x recalls the saved string.

Deterministic Regex (DRX)

Regex whose extended Glushkov automaton
are deterministic.

Can define nonregular languages.

Example Deterministic Regex

γ := ⟨x : (a ∨ b)+⟩ · d · x.
Matches all words udu where u ∈ {a, b}+.

Example Noneterministic Regex

γ′ := ⟨x : (a ∨ b)+⟩ · x.
Matches all words uu where u ∈ {a, b}+.

Simulating DRX in FC-Datalog

We can simulate deterministic regex in
SD FC-Datalog (linear time model checking).

10 / 15



FC and LangSec

LangSec Core Principles

1 Valid input defined as formal language.

2 Full recognition before processing.

3 Principle of least expressiveness.

4 Principle of parser equivalence.

FC and These Principles

1 FC (and its extensions) define/accept formal
languages.

2 FC has optimizations for model checking:
deciding input validity (recognition).

3 The natural restrictions and extensions to FC
give us a framework with an expressivity
hierarchy.

4 More difficult. Equivalence is undecidable,
even for for FC-CQ.

Area for Future Work

Fragments with decidable equivalence.

11 / 15



A Declarative Model for LangSec

FC vs Computational Machines

Simpler writing process.

Can mitigate against unintended
consequences arising when defining a specific
implementation.

Provide clearer error messaging by presenting
unsatisfied subformulas to users.

More concise. The size blow up from an FC
formula to an equivalent regular expression is
not bounded by any recursive function.

Easier to visually compare in cases where
complex data formats are required (so
equivalence cannot be checked).

Example Grammar G

L(G): All strings that do not contain bab.

For binary alphabet {a, b}:
S � aS; A � aB;

S � bA; A � bA;

S � ε; B � aS;

A � ε; B � ε.

As the alphabet grows, so does the grammar.

Equivalent FC formua

¬∃x : x .
= bab.

12 / 15



FC vs Regex

Regex Issues

Difficult to write and interpret.

Portability.

Security (ReDoS - Regular expression Denial
of Service).

FC as a Replacement for Regex

Declarative formulas easier to write and
interpret.

Explicit reuse and compositionality of FC
formulas makes portability much simpler.

Compositionality of components mitigates
against ReDoS issues.

13 / 15



A Framework for Combining Parsers

FC Compositionality

Every formula defines a relation.

These relations can be used in other
formulas.

We can also use relations from other sources.

Some Example External Relation Sources

Parsers from other models.

An existing relational database.

a by-hand implementation (for a relation
that is efficient to verify).

A Unifiying Framework

For combining multiple parsers into a single
text verifier.

Modular components - much more natural in
FC than for computational models.

Weak Equivalence

Need only to decide equivalence of our
subrelations.

Further aligns FC with the LangSec principle
of parser equivalence.

14 / 15



Conclusions and Next Steps

Conclusions

FC: a declarative logic for recognition.

Efficient model checking using lenses (that
tell us which algorithm to use).

Natural fragments and extensions with
desirable properties.

Aligns with LangSec core principles.

A framework for combining parsers.

Next Steps: Three Main Directions

Investigating for further fragments of FC and
its extensions where static analysis problems
such as equivalence become tractable.

Optimizing evaluation algorithms -
“engineering”.

Building a fully-fledged implementation for
FC and its extensions, including such an
optimizer.

From both theoretical and practical
perspectives.

Thank You!

Any Questions?

15 / 15


