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Abstract—A single email gets parsed multiple times: by the
mail server receiving the email, by virus or spam filters, and
finally by the mail client that displays the email to the user.
MIME (Multipurpose Internet Mail Extensions) is a standard
that extends the format of email messages, allowing them to
include multimedia content, attachments, and non-ASCII text.

Ensuring that email content is correctly formatted and inter-
preted across different systems is crucial. Differentials in how
applications parse the same MIME message can have security
implications. For instance, a virus or spam filter might ignore
part of the data that ends up being processed by the mail client.

We present experiments with differential fuzzing to discover
differentials in how MIME parsers handle the same message.
We investigate the root causes and see if the differentials can
be exploited. Our research reveals many parser differentials
in MIME parsers, including some that can be exploited to
smuggle emails past virus and spam filters. On top of that, our
experiments found many memory corruption bugs.

I. INTRODUCTION

When email was introduced initially, security and safety
were not taken into account1. Over the years, this has resulted
in lots of malicious email traffic, such as spam and emails
spreading viruses. Filters were added to block spam and
viruses. Also, protocols such as SPF, DKIM, and DMARC
were added to prevent spoofing of the sender address.

Spam and virus filters are often separate systems from the
mail clients. This means that incoming emails are parsed
several times by different parsers. If these parsers behave
differently, a spam or virus filter might ignore parts of emails.

Differentials in how systems parse data (a.k.a. parser dif-
ferentials) occur when different systems (such as virus filters,
spam filters, or mail clients) interpret the same email message
differently. These differentials can create security gaps that
allow malicious content to slip through undetected by one
component but processed by another. These differentials will
be quickly detected and repaired if they affect functional-
ity. However, differentials that only manifest themselves in
unusual circumstances are unlikely to be noticed and fixed,
potentially leading to security problems later. Security prob-
lems caused by parser differentials include HTTP response
splitting [2] and ambiguities in X.509 certificates [3].

Fuzzing is generally used to find program vulnerabilities.
It is typically performed by sending inputs to a program and

1There is no mention of security in the SMTP RFCs until RFC 2821 from
2001 [1].

checking whether it crashes or hangs. In differential fuzzing,
the results of two or more implementations are compared
to spot differentials. As discussed above, this can uncover
security issues arising from parser differentials.

This paper presents the following contributions:
• We show that differential fuzzing can be used to find

(many!) parser differentials between MIME parsers.
• To do this, we provide a harness for the differential

fuzzing of MIME parsers.
• We analyze the exploitability of the parser differentials.
Sections II and III provide the necessary background for

our research and Section IV discusses the systems we analyse.
After that, Section V discusses the details of our differential
fuzzing setup. Section VI discusses the parser differentials
discovered. We test their exploitability in section VII. Sec-
tion VIII discusses related work and section IX options to
improve our work. Finally, section X summarizes our main
conclusions.

II. EMAIL PROTOCOLS

When an email is sent, several steps and protocols work
together to ensure the message is properly formatted, trans-
mitted, and delivered. These steps include:

• Sending the email: After composing an email in an appli-
cation (such as Gmail or Outlook), the email client uses
the SMTP (Simple Mail Transfer Protocol) to transmit
the message to the recipient’s mail server.

• Processing by the recipient’s server: Once the email
reaches the recipient’s server, it undergoes various checks,
such as spam and virus filtering, before it is delivered to
the recipient’s mailbox.

• Viewing the email: The recipient’s mail client (such as
Thunderbird or Outlook) retrieves the email and presents
it to the user, displaying the content, attachments, or
HTML format as needed.

Behind the scenes, several standards ensure that emails are for-
matted correctly, transmitted safely, and presented accurately.
These protocols include SMTP for transmission and IMF and
MIME for structuring and encoding the email content.

A. SMTP

SMTP is the standard protocol for sending emails from one
server to another over the internet. When an email is sent,



SMTP establishes communication between the sender’s and
recipient’s email servers. Several commands and responses are
exchanged during this process and transmit the email.

SMTP does not dictate how an email is formatted. It does
requires the headers to follow the IMF format and the body
to adhere to the MIME format, especially when dealing with
non-ASCII content or attachments.

B. IMF (Internet Message Format)

IMF defines the standard structure of an email. It ensures
that emails are organized so any email client can interpret
them. Important aspects for our research are:

• Headers: IMF mandates specific headers such as From,
To, Subject, and Date. These headers provide key
information about the email and must follow the structure
<HEADER NAME> : <HEADER BODY>.

• Line Wrapping: To prevent overly long lines in headers,
IMF allows for line wrapping, where a line can be split
by ending with a Carriage Return and Line Feed (a.k.a
CRLF or \r\n) and continuing on the next line with
leading whitespace. So for example the header

S u b j e c t : Th i s
i s a t e s t

that contains a CRLF should be treated just like

S u b j e c t : Th i s i s a t e s t

according to IMF.
IMF handles the basic structure of an email but doesn’t
account for more complex content such as attachments or non-
ASCII characters. For that, we turn to MIME.

C. MIME (Multipurpose Internet Mail Extensions)

MIME expands the capabilities of IMF by allowing emails
to include a wide range of content types, such as attachments,
multimedia, and non-ASCII text. It introduces several key
elements that extend basic email functionality:

1) MIME Headers: MIME introduces additional headers
that specify the type and encoding of the content in the email.
These headers, that are critical in determining how the email
body is processed and displayed, are:

• Content-Type: This header specifies the type of con-
tent contained in the email (e.g., text/plain for plain
text, text/html for HTML emails, or multipart/*
for emails containing multiple parts, such as attachments).

• Content-Transfer-Encoding: This header de-
fines the encoding used for the email content, which
is especially important when transmitting non-ASCII or
binary data over systems that only support ASCII. It
ensures that the data can be correctly interpreted when
received.

2) Multipart Messages: One of MIME’s important features
is its ability to handle multipart messages. A multipart message
allows the email to be divided into separate parts, each of
which can contain different types of content. For example, an

email may contain plain text, an HTML version, and attach-
ments, all in a single message. Different types of multipart
messages are:

• Multipart/Alternative: This is commonly used to send
both a plain text version and an HTML version of an
email. The recipient’s email client chooses which version
to display based on user preferences.

• Multipart/Mixed: This type is used for emails with at-
tachments. Each part of the message is separated by a
boundary string that indicates where one part ends and
another begins.

• Multipart-Preamble: MIME also includes a part called the
multipart-preamble, which is used to include data that is
not meant to be displayed by the recipient’s email client.
This is typically ignored but can be used for special cases.

3) Content-Transfer-Encoding: Since SMTP only supports
US-ASCII (7-bit) characters, MIME provides encoding op-
tions that allow the inclusion of non-ASCII or binary data in
emails. There are two common encoding methods:

• Base64 encoding: This encoding allows binary data (such
as attachments or images) to be converted into ASCII text
for transmission. base64-encoded content can be safely
transmitted over SMTP and decoded by the recipient’s
mail client.

• Quoted-Printable Encoding: This encoding is used for
text that contains mostly ASCII characters but includes
a few non-ASCII characters. It allows characters to be
encoded in a human-readable format, with non-ASCII
characters encoded as their hexadecimal representation.
For example, the letter A might appear as =41, which
becomes the character "A" after decoding.

Because different mail servers and clients may interpret
encoded data differently, properly handling these MIME fea-
tures is critical. For example, base64 encoding uses a specific
alphabet (a-z, A-Z, 0-9, + and /); any character outside this
alphabet should be ignored. Some parsers, however, may not
follow this rule strictly, leading to differentials.

D. Common features of SMTP, IMF, and MIME

SMTP, IMF, and MIME all rely on Carriage Return and
Line Feed (a.k.a CRLF or \r\n) to indicate the end of a line.
This ensures consistent interpretation of email content across
different platforms and email clients. Carriage Return and Line
Feed are ASCII characters and SMTP specification effectively
requires messages to be ASCII-only.

III. DATA SMUGGLING

Data smuggling refers to bypassing security mechanisms,
such as filters or firewalls, to deliver data that should be
blocked. The technique can be applied in various contexts,
ranging from web requests to email communications, and it
often exploits differentials in how systems parse and interpret
the same data.

Several types of data smuggling exist, for instance:
• HTTP Request Smuggling: This involves sending spe-

cially crafted HTTP requests that exploit differentials
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in how web servers, proxies or load balancers interpret
and handle requests. By smuggling data through these
intermediaries, an attacker may be able to bypass security
measures or cause systems to behave unexpectedly [4].

• HTML Smuggling: This technique involves using
JavaScript to smuggle malicious content, such as mal-
ware, into a web browser. The malicious content in
HTML smuggling involves using JavaScript to recon-
struct or decode a hidden or obfuscated payload—often
a binary file like an executable, a ZIP archive, or other
malicious file types—within the victim’s browser, bypass-
ing traditional perimeter defenses like firewalls and email
filters [5].

In this paper we look at email smuggling. Here attackers try
to craft email messages to pass through virus and spam filters
that should block them. By exploiting weaknesses in how
different email system components handle these messages,
attackers can inject malicious content into a mail client. Email
smuggling becomes possible when parser differentials can be
exploited in a full email setup (see Figure 1), meaning the
email message passes through multiple stages—including the
SMTP handler and potentially several filters—while remaining
undetected. If the SMTP handler or a filter rejects the email
due to the differential, the attack fails because the message
never reaches the vulnerable MIME parsers. However, if the
email successfully arrives at the mail client with its malicious
content intact, the differential can be exploited, effectively
bypassing the intended security controls.

Smuggling techniques exploit differentials in how systems
parse or process incoming data. In the case of email smuggling
and this paper, the attack leverages parser differentials between
parsers for the MIME format.

IV. TARGETS

The targets in our research are the different kinds of
components in the email ecosystem that parse emails: mail
servers, spam filters, virus scanners and mail clients. As
explained earlier, each of these have their own role in the
email processing workflow:

• Mail servers are responsible for receiving emails and
applying initial filters, including internal spam and virus
detection mechanisms.

• Spam and virus filters inspect the email’s content, ensur-
ing that no malicious or unwanted content passes through.
If these filters do not correctly parse the email’s MIME
structure, this may result in false negatives where the filter
fail to spot some malicious or unwanted content.

• Mail clients are the final step, displaying the email to the
user. They must correctly interpret the parsed MIME data
to render the email content, attachments, and any other
included elements properly.

We selected open-source targets to analyze, allowing us
to extract the parser code we wanted to analyze from any
surrounding code. For the C(++) implementations it also
allowed us to instrument the code for grey-box fuzzing.

Table I provides an overview of the selected targets. We
briefly describe them below.

Postfix is an open-source mail server that manages the
receipt and routing of incoming emails. After receiving an
email, Postfix processes it through its spam and virus filters
before it is accessible by mail clients. It performs checks on
the MIME structure, such as validating the content type and
ensuring the multipart boundaries conform to standards (as
discussed in section II). Emails with invalid MIME headers or
formats are rejected at this stage.

SpamAssassin is an open-source spam filter that inspects
incoming emails to determine whether they are spam. It applies
a wide range of rules and heuristics to analyze the email’s
content. Parsing the MIME structure correctly is essential for
SpamAssassin, as improperly parsed data might result in false
negatives, allowing spam messages to reach the inbox.

ClamAV is an open-source virus filter that scans incoming
emails for malware or viruses. It parses the MIME data
to inspect attachments or other encoded content that could
contain malicious payloads. Correct MIME parsing is vital
for ClamAV to detect and block harmful emails.

Evolution is an open-source email client that users interact
with to read and manage their emails. It is responsible for
rendering the MIME-encoded content into a readable format,
including displaying text, HTML, and attachments. Accurate
parsing is necessary for the client to correctly display the email
content and handle multipart messages.

Project Version Language Function

Postfix 3.8.2 C Mail server
SpamAssassin 4.0.0 Perl Spam filter
ClamAV 1.2.0 C Virus filter
Evolution 3.50.0 C Mail client

TABLE I: Differential fuzzing targets

V. DIFFERENTIAL FUZZING SET-UP

Our setup for identifying parser differentials between MIME
parsers consists of two main components:

1) A fuzzer to generate MIME messages that are sent to the
targets.

2) A test oracle to evaluate whether the targets parse a
message differently.

Figure 2 gives an overview of the setup. The most challenging
part of this setup is the test oracle. Typically, fuzzers check if a
target crashes or hangs when processing an input, often aided
by instrumentation that detects misbehavior such as memory
corruption. However, determining if multiple targets parse the
same input differently is more complex.

A. Fuzzer

In our experiments we used two fuzzers: AFL++ [6], a
grey-box fuzzer, and T-Reqs, a grammar-based fuzzer2. These

2The experiments using T-Reqs were initially carried out as a Master thesis
project [7].
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Fig. 1: Email handling by a full email setup with a single filter; this filter could be a spam filter or an antivirus solution.

different types of fuzzers turned out to have different strengths,
as we will discuss later: AFL++ was better at uncovering
memory corruption bugs, while T-Reqs was better at in identi-
fying parser differentials. But even when using T-Reqs we still
needed AFL++’s test corpus minimization tool to reduce the
number of test cases found to a manageable number, discussed
in more detail below.

The input grammar of T-reqs and the initial seeds for
AFL++ were crafted/chosen to cover a variety of MIME
features and cover the same features, to aim for good and com-
parable coverage between experiments. The seeds included:

• MIME headers such as Content-Type with different
values (e.g., multipart, plain text, HTML),

• Content-Transfer-Encoding headers, using var-
ious encoding schemes (e.g., 7-bit, 8-bit, and base64),

• email bodies with variations such as plain text, base64-
encoded text, and multipart data.

1) Grey-Box Fuzzing with AFL++: AFL++ is a grey-
box fuzzer that uses instrumentation to gather code coverage
feedback from the target applications. This feedback guides
the fuzzer in generating test cases that thoroughly exercise the
target’s code paths.

The test cases generated by AFL++ are sent to the targets
through a harness that forwards them to the four different
MIME parsers and compares the results. In our set-up AFL++
treats the entire test harness, including the target systems
implemented in C (i.e. Postfix, ClamAV, and Evolution), as
a single target. So the code coverage feedback encompasses
the aggregated execution paths through all these instrumented
components. SpamAssassin, being written in Perl, was ex-
cluded from AFL++ instrumentation. We also excluded the test
harness comparison operations from AFL++ instrumentation
to prevent them from influencing test case generation.

2) Grammar-Based Fuzzing with T-Reqs: T-Reqs is a
black-box grammar-based fuzzer. Unlike a grey-box fuzzer
like AFL++ it requires a grammar of the input format that is
the basis for generating inputs, so we had to provide T-Reqs
with a MIME grammar.

A downside of a black-box fuzzer like T-Reqs compared
to a greybox fuzzer like AFL++ is that if it finds a bugs (or
in our case, a differential) it tends to find many instances of

essentially the same bug (or differential). A greybox fuzzer
automatically weeds out such duplicate findings: the code cov-
erage feedback is not just useful to spot new execution paths,
but also to spot if two test cases generate the same execution
path. Indeed, in our experiments for every differential that T-
Reqs found it produced many test cases that triggered it. We
used AFL++’s afl-cmin corpus minimization tool to weed
out these duplicates.

3) Insights from Using Both Fuzzers: The combination of
AFL++ and T-Reqs yielded complementary results, underscor-
ing the importance of employing multiple fuzzing approaches
for a comprehensive evaluation. Specifically:

• AFL++: As a coverage-guided fuzzer, AFL++ excelled in
finding memory corruption bugs, which were prevalent in
the C-based targets (Postfix, ClamAV, and Evolution).

• T-Reqs: By leveraging its understanding of MIME gram-
mar, T-Reqs was able to uncover more parser differentials
between the targets. These differentials typically reflected
differenes in how MIME structures were interpreted,
some of which AFL++ could not find due to its lack
of semantic understanding of the MIME grammar.

For example, while AFL++ found numerous memory
corruption bugs in Postfix and Evolution, it struggled
to detect subtle differentials in how MIME headers like
Content-Type were parsed. On the other hand, T-Reqs,
with its grammar-based approach, exposed several parser dif-
ferentials, revealing areas where the same MIME message was
handled differently by the two parsers. These differentials,
if exploited, could lead to security vulnerabilities such as
message misinterpretation or unintended processing behavior.

Figure 2 illustrates the overall fuzzer and harness setup.
The grey area represents the instrumented targets for grey-
box fuzzing. The flexibility of our harness allowed us to easily
switch between AFL++ and T-Reqs.

B. Test Oracle

To evaluate parser differentials, we compared the outputs
generated by the targets for the same input MIME messages.
Each target typically produces an output (e.g., a parsed MIME
message as ASCII text), which serves as a representation of
the MIME message. Our test oracle uses Evolution’s output
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Fig. 2: Fuzzer and harness setup overview. The grey area
represents the instrumented targets for grey-box fuzzing.

as the reference and compares it against the outputs of the
other targets. So all differentials we find are differences with
respect to Evolution. Figure 2 illustrates the data flow through
the harness.

There are challenges in comparing outputs directly. For
example, some targets produce multiple representations of
the same message (e.g., plain text and HTML versions).
Additionally, some targets apply formatting changes, such as
replacing a carriage return followed by a newline with just
a newline; ClamAV and Postfix exhibit this behavior, while
Evolution preserves the original formatting. Our test oracle
accounts for and ignores such minor formatting differentials
to focus on more interesting parser differentials.

If any two targets produce different outputs for the same in-
put, it indicates a possible parser differential. Further analysis
is required to determine if these differentials are exploitable
and have security implications.

VI. RESULTS

In this section we first present the raw statistics of our
results, i.e. how many parser differentials for each of the
parsers we found. We then discuss our manual analysis of these
differentials, where we tried to look for the interesting ones
(that might be exploitable for smuggling email past filters)
and we tried to understand the underlying root causes of the
differentials.

A. Numbers of Parser Differentials Found

Using AFL++ our differential fuzzing set-up found 448 test
cases where there was a parser differential, i.e. for which Spa-
mAssassin, ClamAV or Postfix resulted in a parser differential
with Evolution. Using T-Reqs we discovered 349 test cases
resulting in such parser differentials. (In fact, the raw output
of the T-Reqs fuzzing campaign was many thousands of dif-
ferentials, but using the corpus minimisation tool afl-cmin
reduced it to 349 cases.)

These test cases are ‘unique’ in the sense that they have
different execution paths through the combined code of the
C targets (i.e. ClamAV, Postfix and Evolution). Since Spa-
mAssassin is written in Perl and cannot be instrumented, the
AFL++ fuzzing campaign and AFL++’s corpus minimisation

has no insight into SpamAssassin’s parsing routines. So there
is a chance that the corpus minimisation mistakenly discarded
some unique differentials for SpamAssassin, namely if these
had an identical execution path for all other targets.

Figures 3 and 4 depict how the parser differentials found
by T-Reqs and AFL++ are distributed over SpamAssassin,
ClamAV, and Postfix. In these Venn diagrams, each region
corresponds to test cases for which one or more parsers
diverged in output from Evolution. For example, Figure 3
shows that AFL++ found 3 test cases for which SpamAssassin
and ClamAV had a parser differential with Evolution but
Postfix had not and 35 test cases for which only Postfix had a
parser differential with Evolution. For the overlaps in the Venn
diagrams, where several tools showed differential, we cannot
tell if these tools have the same differential. So for instance,
the 42 test cases in the centre of Figure 3 may include cases
where Evolution is the outlier and the other three parsers agree
with each other, but it may also include cases where all four
parsers disagree.

Figure 3 for AFL++ shows large numbers of differentials
involving ClamAV and Postfix but very few – in fact , only
1 – that just involves SpamAssassin. This is due to fact that
AFL++ is only guided by code coverage of the C code of
ClamAV and Postfix while it has no clue about code coverage
of SpamAssassin.

Figure 4 shows that T-Reqs finds a more balanced spread
of differentials. It finds many more for SpamAssassin, as one
would expect given that AFL++’s code coverage guidance is
blind here. It also finds more differentials for ClamAV, which
is more surprising as here AFL++’s code coverage guidance
does work.

ClamAV Postfix

SpamAssassin

4 35

1

3 4

359

42

Fig. 3: Distribution of parser differentials found by AFL++
between Evolution and each of the three other parsers: Postfix,
ClamAV, SpamAssassin.

B. Analysis of Parser Differentials

We manually analysed the test cases that show differentials
to investigate the root cause. The large number made that
very labor-intensive, so for the large classes in the Venn
diagrams where the fuzzing campaigns produced hundreds of
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Fig. 4: Distribution of parser differentials found by T-Reqs
between Evolution and each of the three other parsers (Postfix,
ClamAV, SpamAssassin).

test cases we randomly inspected roughly half and whenever
we identified a root cause we tried to weed out similar test
cases that involved the same pattern. This means we may have
missed some root causes: if these similar test cases that we
ignored involved more than one root causes we may have
missed the additional ones.) In the end we could identify 15
distinct root causes, listed in Table II. As discussed below in
more detail, they fall in roughly two categories, namely those
involving malformed or multiple headers and those involving
conflicting decodings.

a) Malformed or Multiple Header Handling: These are
differentials that stem from the way parsers handle malformed
headers (e.g., invalid IMF syntax, extra colons, missing
carriage returns) or multiple conflicting headers (e.g., two
Content-Type or Content-Transfer-Encoding
fields).

• D2 (Invalid IMF assumed to be body): If Postfix encoun-
ters something it cannot parse as an IMF header, it treats
it as the message body. Others ignore it as part of the
headers.

• D3 (Two Content-Transfer-Encoding headers): When
there are two Content-Transfer-Encoding headers, Evo-
lution decodes the content based on the first header, and
SpamAssassin decodes based on the second. ClamAV is
aggressive in base64 decoding and decodes anyway, and
Postfix does not decode base64.

• D4 (Two Content-Type headers): With two content-type
headers, Evolution considers the first, whereas ClamAV
and SpamAssassin consider the second. Postfix does not
handle the multipart MIME data, so it is unclear how this
handles it.

• D6 (Missing carriage return before body): If a header
ends with only \n (missing a carriage return before it),
and the body does not end with \r\n, SpamAssassin does
not parse the body at all.

• D7 (Header line starting with \r): ClamAV and Postfix
treat such lines as the start of the body, but Evolution

does not.
• D8 (Invalid header that looks like a boundary): Similar to

D2, but for SpamAssassin when the invalid IMF header
starts with multiple - signs.

• D10 (Ignoring empty line after invalid header): If there
is an invalid header, ClamAV will ignore the next line
if it is empty. This means that - where the other parsers
will start parsing the body after that - ClamAV continues
parsing the data as headers.

• D11 (Extra colon in
Content-Transfer-Encoding): When
the Content-Transfer-Encoding
header contains an additional colon (e.g.,
Content-Transfer-Encoding:: base64),
SpamAssassin treats the entire header as invalid and
ignores it. Evolution, however, parses out the portion
before the second colon as a valid header name and
continues to interpret the remaining data (e.g., base64).
It is unclear how ClamAV and Postfix handle this
specific scenario, though we observe that ClamAV
always attempts base64 decoding and Postfix does not
decode base64 at all.

• D12 (Extra colon before the MIME boundary): When
there is an extra colon and data before the boundary
in a multipart ContentType header, Evolution will not
use the boundary to split the multiple parts. In contrast,
ClamAV and SpamAssassin will still parse according to
the specified boundary. Postfix splits the message into two
parts, which is odd, and we do not know what happens
here.

• D14 (Additional quote in multipart header): SpamAs-
sassin ignores an additional quote in a multipart header
while still considering the header data. Evolution ignores
the header, ClamAV handles it as an invalid header, and
Postfix does not do multipart at all.

• D15 (Heavily corrupted header/boundary lines): An ex-
treme case of malformed headers and MIME bound-
aries (e.g., repeated colons, control characters, truncated
boundary strings). Postfix treats most invalid lines as
body content, ClamAV interprets them as raw data,
SpamAssassin retains only minimal header information,
and Evolution attempts to “repair” the headers (injecting
defaults like From:). Because of the widespread corrup-
tion and differing “repair” strategies, the parsers produce
substantially divergent interpretations.

b) Divergent Decoding Strategies (base64, Quoted-
Printable, etc.): Some differentials appear when parsers apply
different methods (or strictness) in decoding. For instance, one
parser might do partial base64 decoding line-by-line, whereas
another decodes the entire body as a single blob.

• D1 (Postfix does not do base64 decoding): Anything
using base64 content transfer encoding will appear dif-
ferently in Postfix outputs.

• D5 (differentials in base64 decoding): The base64 de-
coding differs between Evolution, SpamAssassin, and
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ClamAV when multiple lines of base64 data do not
start with a whitespace. Evolution parses line-by-line,
SpamAssassin only decodes the first line of base64,
and ClamAV decodes the entire body as one. Note that
a single base64 blob can - for all three parsers that
support base64 - be safely split over multiple lines if the
extra lines are line-wrapped according to the IMF line
wrapping method. Then, these three parsers will behave
the same. This is odd, as the MIME standard is clear on
how to handle unknown characters.

• D9 (Fallback to Quoted-Printable): ClamAV uses Quoted-
Printable decoding whenever the stated transfer encoding
is invalid but the data contains =.

• D13 (ClamAV “close-enough” base64): ClamAV can
be convinced to do base64 decoding by considering a
Content-Transfer-Encoding that looks a bit like base64,
for example, bas64 or base6. This limits ClamAV only
to decode it as base64

Table II summarizes which parser(s) each of the root causes
affects. We analyze exploitability in Section VII, focusing on
those differentials most relevant to email smuggling scenarios.
We also have Thunderbird in this table, which we will discuss
later (in section VII).

Root cause Postfix SpamAssassin ClamAV Thunderbird

D1 3 7 7 7
D2 3 7 7 7
D3 Unknown1 3 Unknown2 7
D4 Unknown3 3 3 7
D5 Unknown4 3 3 7
D6 7 3 7 7
D7 3 7 3 3
D8 31 3 7 7
D9 7 7 3 7
D10 7 7 3 7
D11 Unknown2 3 Unknown3 3
D12 3 3 3 3
D13 7 7 3 7
D14 7 3 Unknown4 3
D15 3 3 3 3

1 Due to D2.
2 Due to D1.
3 Unknown because ClamAV always does base64 decoding.
4 Due to D10.

TABLE II: Overview of the root causes of parser differ-
entials. The first three columns show the results of exper-
iments in section VI-B, the last column of experiments in
section VII-B.

C. Memory corruption vulnerabilities

In addition to uncovering the parser differentials described
above, our differential fuzzing using AFL++ revealed numer-
ous memory corruption vulnerabilities in the MIME parsers
of Postfix, ClamAV, and Evolution. Upon further analysis, we
found that many of these issues manifested as memory asser-
tion errors; however, we also identified a significant number
of memory corruption bugs. We are still in the process of

analyzing the root causes of these vulnerabilities, and several
have already been reported to the respective maintainers.

It is disappointing to see that there are some many memory
corruption bugs in these parsers that could be found by simple
fuzzing. One would hope that email handling code is fuzzed as
part of the quality assurance process, especially since the code
is handling data that comes from the public internet. Note that
our fuzzing campaign was not even intended to look for these
kinds of bugs; for instance, the code was not instrumented
with sanitisers to help with finding memory corruption bugs.

Interestingly, Postfix, ClamAV, and Evolution are included
Google’s OSS-Fuzz initiative [8]. This means that they have
already been fuzzed, including by AFL++, as this is one
of the fuzzers used by OSS-Fuzz. Apparently the memory
corruption vulnerabilities that we uncovered have not been
found in the OSS-Fuzz fuzzing campaigns. Presumably the
fuzzing harnesses (or entry points) provided by the projects
for OSS-Fuzz are inadequate. So while it is a positive sign that
the projects are enrolled with OSS-Fuzz, it is disappointing to
see that this is not done with the care and attention it deserves.

VII. EXPLOITABILITY ANALYSIS

This section discusses our tests to see if the discovered
parser differentials are exploitable for email smuggling as
defined in Section III, i.e. if they can be exploited to sneak
an email or email attachment past a anti-virus or spam filter
because the differential causes the filter to ignore it. We first
describe the setup we used to analyze exploitability and then
provide our results and discuss these.

A. Exploitability test set-up

To test for exploitability, we manually crafted emails that
were designed to be blocked by ClamAV or flagged as spam by
SpamAssassin but which might slip past these filters because
of some parser differential. To craft these emails we used
specific payloads that should either trigger ClamAV to block it
as a virus or trigger SpamAssassin to mark it as spam. We used
these payloads in combination with each of the (applicable)
parser differentials we discovered. If the resulting email then
ends up in the email client without being blocked or marked
as spam then the differential is exploitable.

As test set-up we used a Postfix mail server with SpamAs-
sassin and ClamAV as filters. We connected to this with two
email clients, Evolution and Thunderbird, to see how these
treat the emails. This results in a setup as shown in Figure 5.

The Postfix mail server tells us if an email is blocked
by ClamAV or tagged as spam by SpamAssassin. If one of
the email viewers, Evolution or Thunderbird, shows data that
should have been tagged as spam by SpamAssassin without
marking at such, or provides data that should have been
blocked by ClamAV, we have an exploitable parser differential
for that viewer.

The payloads we used are:
1) The EICAR anti-malware test value3 - for ClamAV, and

3https://www.eicar.org/download-anti-malware-testfile
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Incoming mail

Mail server:
Postfix

Virus filter:
ClamAV

Spam filter:
SpamAssassin

Mail client 1:
Evolution

Mail client 2:
Thunderbird

Potentially tagged as spam

Reject

Block

Fig. 5: Our exploitability test setup

2) The GTUBE spam filter test value4 - for SpamAssassin.
These are values that should trigger ClamAV and SpamAssas-
sin, respectively: ClamAV should block the EICAR value, and
SpamAssassin should mark any email containing the GTUBE
value as spam. Depending on the parser differential we try to
exploit, these values are sometimes used in the body, either
as plaintext or base64-encoded, or in the MIME multipart-
preamble.

The EICAR test values have several versions, of which we
use two:

1) The plain-text value: This is easier to use than the zip file
version but is limited because it cannot be a substring of a
larger text. This means that differentials that require more
data at the start or end will stop ClamAV from detecting
this value.

2) A zip file test: This is more difficult to use than the plain-
text value because it has to be encoded to be used in a
valid email. This results in more complicated tests but
does allow for more data at the end of the file - because
then the zip file is still valid. It still does not allow for
more data at the start of the file, as the zip file is no
longer valid.

Whenever a difference does not require additional data at the
start or end of the test value, we use the plain-text version. We
use the zip file version when the difference requires additional
data at the end of the test value. When the difference require
additional data at the start of the test value, we cannot use
either test value and thus can not test for exploitability.

Postfix also contains some filters, namely to validate the
email format. Obviously emails that are rejected by Postfix as
invalid are not interesting as test cases for smuggling data past
ClamAV and SpamAssassin.

4https://spamassassin.apache.org/gtube

B. Exploitability test results

Using the manually crafted emails in the set-up as discussed
above, we found that some of the parser differentials in Sec-
tion VI-B are exploitable. An overview of which differential is
exploitable for smuggling data past SpamAssassin or ClamAV
when using either Evolution and Thunderbird as mail client is
given in Table III. They are discussed in more detail below.
For some differentials, marked as Unknown in Table III, we
could not make sure because of our testing setup if they really
were exploitable or not, as we explain this in the reminder of
this section.

The fact that some of exploits work for Evolution but not
for Thunderbird shows that there are also parser differentials
between these email viewers. We will publish the exploit
emails once the vulnerabilities have been addressed by the
respective vendors, ensuring a responsible disclosure process
while still providing the community with reproducible test
cases.

1) Difference D3: For SpamAssassin, difference D3 is
exploitable by putting a base64 transfer encoding header first
and a 7bit transfer encoding header second. Testing this with
the GTUBE value shows that the email does not get marked
as spam, even though both Evolution and Thunderbird show
the GTUBE value. This is a successful email smuggling.

For ClamAV, this difference is not exploitable because
ClamAV still blocks the email.

2) Difference D4: For SpamAssassin, difference D4 is
exploitable. It can be exploited by using a plain text content
type header first, then using a multipart alternative content type
header second, and putting the GTUBE value in a multipart
formatted message in the multipart-preamble. The GTUBE
value appears on the first line in Thunderbird and Evolution.

We note an entry in the logs about the mail containing bad
headers, though this does not impact the mail being delivered.

For ClamAV, this difference is not exploitable because
ClamAV still blocks the email.

3) Difference D5: difference D5 (difference in base64
decoding) is not exploitable through SpamAssassin.

Testing this difference requires more data at the start of the
test value, so we cannot use our setup to test if it is exploitable
for ClamAV. This is a limitation of the EICAR test values as
explained in VII-A.

4) Difference D7: SpamAssassin marks the email as spam,
so it is not exploitable through SpamAssassin.

We cannot test whether ClamAV is exploitable, as it requires
more data at the start of the test value. This is a limitation of
the EICAR test values - as explained in VII-A. This means
that we do not know if this is exploitable for ClamAV.

We also realized that this difference occurs between Thun-
derbird and Evolution. Thunderbird also parses the header
prefixed with a carriage return as part of the body of the mail,
like ClamAV and Postfix.

5) Difference D9: Difference D9 is not exploitable through
SpamAssassin, but we cannot test this with our test values for
ClamAV. That is because the test values do not contain equal
signs and do not allow for modifications to include them.
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Difference cause Evolution Thunderbird

D1 7 7
D2 7 7
D3 3 3
D4 3 3
D5 7 7
D6 7 7
D7 7 7
D8 7 7
D9 7 7
D10 7 7
D11 3 7
D12 7 7
D13 7 7
D14 7 7
D15 7 7

(a) Smuggling through SpamAssassin

Difference cause Evolution Thunderbird

D1 7 7
D2 7 7
D3 7 7
D4 7 7
D5 Unknown Unknown
D6 7 7
D7 Unknown Unknown
D8 7 7
D9 Unknown Unknown
D10 7 7
D11 7 7
D12 7 7
D13 7 7
D14 7 7
D15 7 7

(b) Smuggling through ClamAV

TABLE III: Overview of exploitability of parser differentials

6) Difference D11: Difference D11 is exploitable through
SpamAssassin, but only for the Evolution mail client. The
email to exploit it has an invalid base64 Content-Transfer-
Encoding header, and then the GTUBE value base64 encoded
in the body. Evolution still decodes the body, even though the
header is invalid. Thunderbird does not decode the body and
thus only shows the base64 encoded value.

7) Difference D15: Because the email is extensively mal-
formed (multiple extra colons, control characters, truncated
boundary markers), Postfix lumps most invalid lines into the
message body (similar to D2) rather than rejecting them out-
right. However, ClamAV and SpamAssassin still see the com-
plete payload and detect EICAR or GTUBE as intended, so
D15 is not exploitable in our setup. Meanwhile, Evolution and
Thunderbird display differentials (with Evolution attempting
to “repair” more headers), illustrating how heavily corrupted
headers can lead to divergent client-side behavior—even if
they do not bypass spam or antivirus filters.

C. Discussion on the exploitability test results

For ClamAV, we were limited by the EICAR values that
cannot have more data at the start. Due to this, we could not
test the exploitability of three of the nine parser differentials
we found for ClamAV, so exploitability of these is unknown.

Only three of the eight parser differentials we found were
exploitable for SpamAssassin. One of those was only ex-
ploitable with the Evolution mail client, not with Thunderbird.
While this means we have succeeded in smuggling data
through SpamAssassin, it is disappointing – from an attacker’s
perspective – that so many parser differentials we found are
not exploitable for SpamAssassin and ClamAV.

We expect this to be either due to a different part of the full
setup – which may change the contents of the mail subtly – or
it could be that SpamAssassin and ClamAV have some output
that is not picked up by the harness (they may, for example,
also look at the data before it enters the MIME parser). In
either case, it is good to see – from a defender’s perspective
– that this means there are few methods for successfully
smuggling data.

The differentials we found between the two email clients
Thunderbird and Evolution (D7, D11, D12, D14) are also
interesting. They show that the mail clients do not always
behave the same either, which can be used to show different
data to different users - depending on which mail client they
use. Since Thunderbird was not part of our differential fuzzing
campaign, we did not expect to find such differentials. It shows
that the differential fuzzing produced examples of complicated
corner cases that not just problematic for the parsers used in
the fuzzing, but also for other parsers.

VIII. RELATED WORK

A. Email Smuggling

There is some prior research into MIME or SMTP differ-
entials that might allow attackers to bypass security checks.
But, as discussed below, none of that work involved the use of
fuzzing to automatically find differentials. Also, all this earlier
work looked at different aspects of the email protocol stack,
namely authentication possibilities.

Chen et al. [9] attempted to circumvent email authentica-
tion (SMTP/DKIM) by exploiting differentials between mail
servers and clients. Likewise, Longin [10] focused on abusing
SMTP to bypass certain security checks. Although these works
illustrate the potential for message-based attacks, neither uses
an automated fuzzing approach, and both focus on SMTP
rather than MIME.

Müller et al. [11] studied how to spoof S/MIME signatures
by manipulating signature data within MIME. Similarly, Pod-
debniak et al. [12] introduced Efail, which leverages exfiltra-
tion channels in S/MIME and OpenPGP to break email en-
cryption through maliciously crafted MIME structures. While
these attacks partially overlap with our goal of discovering
vulnerabilities in MIME processing, they do not rely on
systematic fuzzing, nor do our targets include a dedicated
signature-checker parser (see Section IV). Hence, we cannot
directly compare results, but they underline the broader risk
of parsing inconsistencies in secure email systems.
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Both Chen et al. [9] and Müller et al. [11] use manual
analysis to find vulnerabilities in MIME structures. In contrast,
our work automates the discovery of MIME parser differen-
tials, using both a grey-box fuzzer (AFL++) and a black-box
grammar-based fuzzer (T-Reqs). This approach systematically
uncovers hidden differentials that manual analysis might miss.

B. Differential Fuzzing

There has been prior work on differential fuzzing for case
studies other than email.

Numerous studies have applied differential fuzzing to dif-
ferent domains:

• URLs – Dippygram [13],
• Ethereum Virtual Machines – EVMFuzz [14],
• JavaScript Engines – Jit-picking [15],
• HTTP servers – T-Reqs [16], Gudifu [17],
• QUIC – DPI-Fuzz [18].

Some of these (Dippygram, Jit-picking, Gudifu) use coverage
guidance, like our AFL++ approach. T-Reqs [16] and Gud-
ifu [17] also focus on data smuggling (in HTTP contexts),
mirroring our approach of bypassing email filters.

NEZHA [19] pioneered differential testing for semantic
bugs, and HDiff [20] built on it to reveal Host header confusion
and request smuggling. Chen et al. [21] and Nguyen et
al. [22] similarly exposed HTTP parsing flaws leading to
cache poisoning and Host header mismatches. Although these
works focus on HTTP, we adopt a comparable methodology
for MIME parsers, revealing that similar parser differentials
also arise in email.

Finally, SFADiff [23] employs fuzzing to build Symbolic
Finite Automata (SFAs) from multiple implementations (e.g.,
TCP stacks, web browsers) and compares them to identify
differentials. While we compare concrete outputs for MIME,
SFADiff could conceptually be adapted to model MIME
parsers, offering insights via state machines rather than direct
output comparisons.

Finally, SFADiff [23] employs fuzzing to build Symbolic
Finite Automata (SFAs) from multiple implementations (e.g.,
TCP stacks, web browsers) and compares them to identify
differentials. Active-learning approaches such as protocol state
fuzzing for TLS [24], as well as recent work on analyzing
control-plane protocols in 5G basebands [25], also rely on
state-based testing and might be seen as specialized forms
of differential fuzzing. While our work compares concrete
outputs from MIME parsers, SFADiff (and related SFA-based
methods) could conceptually be adapted to model MIME
parsers, providing state-machine insights rather than direct
output comparisons.

IX. FUTURE WORK

Because we used differential fuzzing specifically on the
MIME parser, we were limited to targets where we could
easily isolate the MIME parser. This limited our research
to open source implementations. Proprietary targets, such as

Proofpoint Email Protection5 or Outlook6(which are services),
could be interesting targets to investigate too on further
research. Our exploitability analysis could be performed on
proprietary implementations, though care should be taken not
to get blocked or put on blocklists. For this reason, we have
not tried this.

We limited ourselves to the MIME parser, but as explained
in section II, emails consist of more formats and protocols.
Looking for parser differentials in IMF or SMTP could also be
interesting for further research. Also, other additional formats
for email—like SMIME—could be interesting to target with
fuzzing. Additionally, we plan to finish analyzing and report-
ing the memory corruption vulnerabilities uncovered during
our fuzzing campaign.

MIME parsers can have multiple outputs, but not all systems
use all outputs. Mail clients, in particular, will only show a
specific output to the user, but not all of them. A typical email
client will either show the plaintext or the HTML part, but not
both. It could also be interesting, separate from this research,
if different mail clients handle this differently.

As explained in section V, our fuzzing harness uses cov-
erage guidance instrumentation for the concatenation of our
three targets written in C. Splitting the coverage guidance
instrumentation per target could be interesting to filter out
more similar testcases. To illustrate how multiple targets can
create apparent duplicates, consider an example with two test
cases (T1 and T2) that produce a differential only between
ClamAV and Evolution. Suppose both T1 and T2 follow the
same execution paths in ClamAV and Evolution (leading to
the same parser difference), but T2 takes a different path in
Postfix. Because our current instrumentation tracks all targets
together, the harness sees T2 as unique based on Postfix’s
new path—even though, from the perspective of ClamAV and
Evolution (where the actual differential occurs), T1 and T2 are
essentially the same case. Splitting instrumentation per target
and ignoring coverage changes for targets that do not exhibit
a difference would reduce these unnecessary duplicates.

It is also possible to improve our differential grey-box fuzzer
by adding support for structure-aware fuzzing by considering
the input formats of the MIME specification. For example, the
“Protocol Buffers” input format [26] with its mutator tool [27]
can be used to enable structure-aware fuzzing.

X. CONCLUSION

We applied differential grey-box fuzzing to uncover many
parser differentials between the MIME parsers in ClamAV,
Postfix, SpamAssassin, and Evolution, a few of which could
be exploited for email smuggling. Our approach automatically
provided 448 example testcases that trigger parser differentials
between some of the targets. Analyzing these differentials,
we found 15 root causes, three of which turned out to be
exploitable in the sense that they could bypass virus or spam
filters. Here we only considered one particular setup of an

5https://www.proofpoint.com/us/products/email-security-and-protection/
email-protection

6https://outlook.com
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email system; other combinations of email servers, security
filters, and clients may exhibit other vulnerabilities.

Our test cases also revealed some differentials between the
ways the two email clients Evolution and Thunderbird parse
MIME, even though Thunderbird was not part of the targets
in our differential fuzzing campaigns. This shows our fuzzer
found corner cases in the MIME format that other parsers
might struggle with too.

Apart from the parser differentials we also found many
memory corruption vulnerabilities in the C-based targets,
especially in the fuzzing campaign with AFL++, even though
it was not even our intention to look for these. What makes
this surprising is that the targets in question are enrolled in
OSS-Fuzz, so they have been fuzzed before, including with
AFL++, but apparently poorly. Clearly the fuzzing harnesses
for these targets supplied to let them be fuzzed by OSS-Fuzz
can and should be improved. As these systems are internet-
facing they should be rigorously fuzzed.

Grey-box fuzzing has the well-known advantage of automat-
ically discovering interesting test cases, but for our research
another important benefit was its ability to remove duplicate
findings by only retaining those that trigger new execution
paths. This was crucial because we had to manually inspect
differentials to understand their root causes and manually
construct examples that attempted to exploit them. Even when
using the grammar-based fuzzer T-Reqs we needed AFL++’s
corpus minimisation tool to reduce the huge number of differ-
ential examples from many thousands to several hundred. Even
analyzing a few hundred testcases was already very labor-
intensive.

While a grey-box fuzzer can discover more differentials in
C-based targets, we have observed that T-Reqs—a grammar-
based black-box fuzzer—found more differentials tied to
header confusion and thus proved especially useful for email
smuggling. This systematic mutation of MIME headers and
encodings, unrestrained by instrumentation, leads us to con-
clude that a grammar-based grey-box fuzzer (similar to [28])
might be an even more effective strategy.

Our findings underline the challenges posed by the ambi-
guity of the MIME specification, which clearly leaves room
for inconsistent interpretations among parsers. We have filed
bug reports for parser differentials that can lead to email
smuggling, though not all of these differentials indicate a
specific flaw in one parser; in some cases, the cause is an
inherent ambiguity in the MIME standard itself. Ideally of
course, a more formal, unambiguous specification for data
formats such as MIME would prevent – and maybe even
eliminate – such parsing differentials and remove or at least
limit the potential for exploiting them.
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