Email Smuggling with Differential Fuzzing of MIME Parsers

Seyed Behnam Andarzian, Martin Meyers, Erik Poll

IEEE Symposium on Security and Privacy Workshops - LangSec 2025

Email Smuggling:

Email Smuggling:

The user sees two emails!

•	admin@gmx.net I'm the admin now!	Message #2
•	user@gmx.net lorem ipsum	Message #1

Email Handling:

Differential Fuzzing:

Differentials found with T-Reqs before de-duplication:

Differentials found with T-Reqs after de-duplication with afl-cmin:

Grey-box fuzzer: AFL++

• More differentials for C/C++targets

Grammar based fuzzer: T-Reqs

Differentials are more meaningful
= more likely to be exploitable

Root causes of the differentials :

- 1. Malformed headers
- 2. Different decoding strategies

Root cause	Postfix	SpamAssassin	ClamAV	Thunderbird
D1				
D2	1			
D3		✓		
D4		\checkmark	1	
D5		\checkmark	1	
D6		\checkmark		
D7	1		1	\checkmark
D8	1	\checkmark		
D9			\checkmark	
D10			1	
D11		✓		\checkmark
D12		1	1	1
D13			1	
D14		1		1
D15		1	✓	1

Exploitability results:

Difference cause	Evolution	Thunderbird
D1		
D2		
D3	1	✓
D4	1	\checkmark
D5		
D6		
D7		
D8		
D9		
D10		
D11	1	
D12		
D13		
D14		
D15		

(a) Smuggling through SpamAssassin

Memory corruptions bugs found by AFL++:

- Two memory-corruption vulnerabilities found in Evolution and ClamAV
- Numerous assertion failures found in both Evolution and ClamAV
- ClamAV is enrolled in OSS-fuzz project, but these vulnerabilities are not found
 - The test harness is poor?

Key takeaways:

- MIME specs are sloppy
- Lots of differentials 😕
- Few exploitable ③
- Lot of work to look into the differentials
- Grammar based fuzzer is better in finding exploitable differentials
- Surprisingly, we found memory corruption bugs; don't these people use fuzzers?!

Thank you