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Abstract—Parsers validate and process untrusted user input
and transform it into data structures that provide easier access.
Software engineers either build these parsers for data formats
from scratch or leverage libraries targeting specific formats.
The recent surge in data description languages (DDLs) and
parser combinator libraries for parsing data formats has aided
developers in producing parsers using standardized tools. How-
ever, producing a parser for an unfamiliar data format in an
unfamiliar DDL can be daunting, given the learning curve of
understanding two specifications or manuals well.

As more researchers adopt tools such as GitHub Copilot [39] to
simplify their programming tasks, we ask whether LLMs already
hold sufficient knowledge to produce valid DDL specifications for
popular data formats. To explore this, we systematically prompt
LLMs to provide specifications in valid DDL syntax and evaluate
whether these specifications are syntactically valid and correct.

We found that while some LLMs, such as GPT 4 Turbo, Claude
3.5 Sonnet, and Deepseek V3, can produce valid Kaitai Struct
YAML files, Hammer C files, and Rust Nom files, they struggle to
produce valid specifications in complex DDLs, such as DaeDaLus,
Spicy, and DFDL. In general, all LLMs fare much better at
producing syntactically valid C code using the Hammer library
and Rust code using the Nom library, given the large corpora
of valid C and Rust code available. None of the LLMs in our
test were able to produce a valid DFDL file or DaeDaLus file.
We also found that while providing the specification manuals
for the DDLs did not help in producing more syntactically
valid specifications, providing sample specification files modestly
increased the number of successful compilations.

I. INTRODUCTION

Large Language Models (LLMs) have been effectively used
to tackle complex security tasks, such as reverse engineer-
ing stripped binaries by labeling functions and variables in
them [41], [49]. Similarly, programmers have been extensively
using AI assistants, such as GitHub Copilot, to aid in bug
fixes and routine programming tasks [36]. While these results
demonstrate that programmer effort is significantly reduced by
using LLMs for these targeted tasks, parsers for data formats
are still written mainly by hand today. Figure 1 shows the
iterative approach taken to build parsers for data formats.

File formats such as PDFs are incredibly complex, span-
ning over 1000 pages, and do not contain any grammar
descriptions [48] (the machine-readable PDF specification, the
Arlington DOM, is primarily to check types on dictionary and
array objects). While researchers have used natural language
processing to aid with these parser generations, they have
been error-prone and have required extensive human-assisted
testing [25].
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Fig. 1. The workflow for how developers implement specifications in parsers.

Vendors also often create dialects of formats to suit their
specific needs. These dialects may leverage bytes reserved for
future implementations or violate the specification entirely by
implementing new features. These patterns have been observed
extensively in the evolution of the Modbus protocol and the
PDF file format. Researchers building these parsers often
encounter these specification drifts and must decide whether
to throw errors on these changes or allow them by modifying
the specification.

This paper hypothesizes that given LLMs have been trained
on publicly available data (including web pages), they may
already include sufficient context on the syntax of data descrip-
tion languages (DDLs) and data format specifications. These
DDLs are often used to describe various formats to provide
systematic frameworks to parse unsanitized data into parsed
objects. There are currently many popular DDLs at various
stages of development: Kaitai Struct [50], Apache DFDL [26],
DaeDaLus [14], Spicy [43], and Parsley [30]. Other popular
DDLs, such as the format analyzers on Wireshark and Ever-
Parse [37], are designed to cover only network protocols.

A natural question a reader may ask is that if LLMs un-
derstand format specifications, why not directly generate code
in the target programming language? DDLs use a paradigm
where developers can easily understand format descriptions
and make changes and bug fixes as necessary [20], adhering
to LangSec principles [40]. Parser combinator code (such as
Nom for Rust and Hammer for C/C++/Python) is directly in
the target programming language.

Researchers have already demonstrated that LLMs can be
provided with domain-specific language (DSL) grammar in
Backus-Naur Normal Form (BNF), and they can be prompted



to produce data that adheres to that grammar or is a subset of
it [44], [47]. However, producing valid parsers for data formats
is cumbersome and requires specific expertise. Fakhoury et
al. [15] presented 3DGen to tackle these problems to automate
the producing specifications in DSLs with the assistance of
LLMs.

While they primarily focused on the EverParse [37] parsing
tool, we go beyond by demonstrating how these LLMs can
generate specifications in a wide range of DDLs. In addition,
while EverParse was designed for network protocols, we
also studied specification generation for file formats. Finally,
instead of relying on generating inputs from the specification
using tools such as 3DTestGen, we constructed a test corpus
using publicly available data via GovDocs, CommonCrawl,
and packet captures.

We explore how accurate parser production can be made
accessible to a larger audience with minimal domain expertise
in DDL technologies and the targeted data formats. We seek
to answer the following research questions as part of this
investigation:
RQ1: Can off-the-shelf LLMs produce DDL code that is
syntactically valid?
RQ2: Does the generated DDL code cover 100% of the format
specification?
RQ3: Does the generated DDL code reject malformed inputs?
RQ4: Can LLMs learn the syntax of DDLs they do not know
using example specifications and manuals?

We frame the following hypotheses on the above research
questions.

Hypothesis 1: LLMs can produce some syntactically valid DDLs,
but their success rate depends on the complexity of the data
formats.
Hypothesis 2: LLMs tend to miss strict specification requirements
and constraints.
Hypothesis 3: LLM-generated DDL code is permissive and ac-
cepts some malformed inputs.
Hypothesis 4: After being provided with manuals and examples,
LLMs can produce some syntactically valid DDL code that was
previously invalid.

We created a list of 20 data formats (network protocols
and file formats) and collected a corpus of at least 100
representative samples for each of these data formats. We then
evaluated the LLMs on a collection of evaluation scenarios
designed to answer the above questions. To this end, our
contributions are as follows:

• We created the most extensive corpus of validated spec-
ifications in several DDLs for the wider community
(Section III).

• We demonstrate that without much context provided via
prompting, some LLMs can provide accurate, syntacti-
cally valid specifications in a DDL syntax. We validated
these claims using a corpus of publicly available files and
packet captures (Section IV and V).

• Finally, we show that by providing example specifica-
tions, we are able to teach LLMs DDL syntax. We show
that Few-Shot Learning performs better at providing com-

piling DDL files than Zero-Shot Learning (Section VI).
a) Organization: Section II provides the necessary back-

ground for the paper. Section III describes the experimental
setup and provides an overview of our LLM-based DDL
Generation system. Sections IV, V, and VI tackle the research
questions posed. Finally, Section VIII discusses future direc-
tions and the impact of this work on the LangSec field.

b) Availability: Our experimental setup was built using
around 1500 lines of Python code. The source code and the
DDL files generated by our experiments are available on our
GitHub repository [31]. The repository also contains the scripts
and SQLite database files used to generate all the graphs and
tables included in this paper.

II. BACKGROUND

A. Parser Security

Parsers are a program’s first line of defense. They must
reject invalid data while converting valid data into a data
structure for the rest of the program. Language-theoretic
security (LangSec) proposes that parsers for data formats must
be separated from the rest of the code and fully validate any
inputs before the rest of the code operates on them.

Given the critical nature of parsers, it is vital to ensure
that the parsers can be easily audited and missing checks
can be added. Shotgun parsing approaches, where parsing and
processing logic are interspersed, make it harder to realize
these LangSec goals [7]. To tackle the challenge of shotgun
parsing, two broad paradigms have been proposed: (1) using
parser combinators to describe data formats—making it eas-
ier to write code that looks like formal grammars, and (2)
describing data formats in the syntax of formal grammars in
Data Description Languages (DDLs) and using compilers to
generate parser code from them. In our study, we incorporated
four DDLs and two parser combinators, as shown in Table I.
Additionally, Figure 2 demonstrates the syntax used by each
DDL and parser combinator in our study for a portion of the
IPv4 packet.

B. Data Description Languages

In DDLs, we describe grammar in particular syntax and run
a parser generator to generate code in any target language.
DDLs are, hence, essential to standardization efforts since
standardization bodies can define the syntax and semantics
of a data format in a DDL and rely on the parser generation
tools to generate parsers for most languages.

Kaitai Struct is a data description language and a parser
generation toolkit that supports runtimes in several lan-
guages [50]. It is one of the most used DDLs and supports
various formats in its gallery. Kaitai uses YAML syntax
and unconventionally handles offsets using a syntax where
locations and types associated with those locations are defined.
Additionally, they also support a web IDE to build specifica-
tions and visualize them with data.

Data Format Description Language (DFDL) is an
industry-standard often used to model text-based and binary
data [26]. The Apache Daffodil runtime uses the DFDL



TABLE I
A COMPLETE LIST OF FORMATS, PROTOCOLS, DDLS, AND LLMS WE INCLUDE IN OUR STUDY.

File Formats Network Protocols Parsing Technologies Large Language Models
PNG DNS Kaitai Struct Claude 3.5 Sonnet
JPG ICMP DFDL Claude 3.5 Haiku
GIF Bitcoin Transactions DaeDaLus GPT-4o
TIFF Modbus Zeek Spicy GPT-4-Turbo
NITF NTP Hammer Llama-3.3-70B
DICOM TLS Client Hello Rust Nom DeepSeek Coder V3
ELF HTTP/1.1 Gemini 1.5 Flash
ZIP MQTT
GZIP ARP
SQLITE3 HL7 v2

Hammer Parser
h_sequence(

...
h_uint16(), // total_length
h_uint16(), // identification
h_uint16(), // b67
h_uint8(), // ttl
h_uint8(), // protocol
h_uint16(), // header_checksum
h_repeat_n(h_uint8(), 4), //

src_ip_addr↪→
h_repeat_n(h_uint8(), 4), //

dst_ip_addr↪→
NULL

);

Rust Nom
...
let (input, length) =

number::streaming::be_u16(input)?;↪→
let (input, id) =

number::streaming::be_u16(input)?;↪→
let (input, flag_frag_offset) =

flag_frag_offset(input)?;↪→
let (input, ttl) =

number::streaming::be_u8(input)?;↪→
let (input, protocol) =

ip::protocol(input)?;↪→
let (input, chksum) =

number::streaming::be_u16(input)?;↪→
let (input, source_addr) =

address(input)?;↪→
let (input, dest_addr) =

address(input)?;↪→
...

DaeDaLus
def IPv4_header_s =

struct
...
total_length : uint 16
identification : uint 16
b67 : uint 16
ttl : uint 8
protocol : uint 8
header_checksum : uint 16
src_ip_addr : [uint 8; 4]
dst_ip_addr : [uint 8; 4]

Kaitai Struct
seq:

...
- id: total_length
type: u2be

- id: identification
type: u2be

- id: b67
type: u2be

- id: ttl
type: u1

- id: protocol
type: u1

- id: header_checksum
type: u2be

- id: src_ip_addr
size: 4

- id: dst_ip_addr
size: 4

DFDL
<xs:sequence>

...
<xs:element name="Length"

type="b:bit" dfdl:length="16"/>↪→
<xs:element name="Identification"

type="b:bit" dfdl:length="16"/>↪→
<xs:element name="Flags"

type="b:bit" dfdl:length="3"/>↪→
<xs:element name="FragmentOffset"

type="b:bit" dfdl:length="13"/>↪→
<xs:element name="TTL" type="b:bit"

dfdl:length="8"/>↪→
<xs:element name="Protocol"

type="b:bit" dfdl:length="8"/>↪→
<xs:element name="Checksum"

type="chksum:IPv4Checksum"/>↪→
<xs:element name="IPSrc"

type="ip:IPAddress"/>↪→
<xs:element name="IPDest"

type="ip:IPAddress"/>↪→
</xs:sequence>

Spicy
type ip4_hdr: record {

...
len: count;
id: count;
DF: bool;
MF: bool;
offset: count;
ttl: count;
p: count;
sum: count;
src: addr;
dst: addr;

};

Fig. 2. Sample Files in DDL syntax for a portion of the IPv4 header packet. We implemented the same portion of the packet in Hammer and DaeDaLus
syntax, whereas Rust Nom [6], Kaitai [23], DFDL [5], and Spicy [51] were sourced from publicly available repositories.

specifications or schemas to parse data and converts the data
to an information set (Infoset). DFDL schemas are described
in XML files. Unlike other DDLs, DFDL also includes a
serializer to restore these infosets into binary data.

The DaeDaLus DDL [14] defines data formats in a syntax
that closely resembles Nail [4]—while implementing it as a
library within Haskell. Additionally, DaeDaLus also includes
a parser generator for C++. At its core, DaeDaLus relies
on various Haskell features, for example, offsets and other
complex constructs.1

1The authors have used DaeDaLus and Daedalus interchangeably.

Zeek Spicy parser generator is a part of the Zeek Intru-
sion Detection system project [43]. It uses a domain-specific
language to describe file formats and network protocols. The
spicyc compiler can generate a compiled parser or produce
C++ code that can be imported into existing applications.

C. Parser Combinators

The idea of parser combinators originates from functional
programming [21]. Parser combinators make composing larger
parsers using these combinators a lot easier by allowing
combining parsers that may perform partial parsing operations



TABLE II
PROMPT TEMPLATES WE USED IN OUR STUDY TO QUERY LLMS.

Prompt Type Template
First Prompt You are a software developer who has read the {specification} for the {format}. Can you list all the fields in the

specification along with all the values each field can take?
Generate Scripts Can you use this knowledge to generate a {ddl} specification for the {format} in {output} format? Make sure to

cover the entire specification, including any optional fields. Do not provide any text response other than the format
specification. Show only the complete response. Do not wrap the response in any markdown.

Fixing Errors The previous response gave me an error. Can you use this error message: “{message}” to improve the specification
and give me an improved, complete, and fixed {ddl} specification in {output} format. Give me only the complete
generated code and no text with it. Ensure that the previous requirements are still met.

From Samples You are a software developer familiar with the {specification} for the {format}. Given various sample specifications for
different formats in {output}, use the insights from these samples to generate a comprehensive {ddl} specification for
{format} in {output} format. Ensure that the entire specification is covered, including all optional fields. Provide only
the complete {format} specification without any additional text or markdown formatting. Here are sample specifications
for reference {sample text}.

Using Manuals Study the attached documentation carefully for {ddl} to answer my upcoming questions. You are a software developer
who has read the {specification} for the {format}. Can you use this knowledge and the {ddl} documentation
shared previously to generate a {ddl} specification for the {format} in {output} format? Make sure to cover the
entire specification, including any optional fields. Return the response containing only the specification without any
explanation.

using higher-order functions like Kleene star, choices, and
sequences.

A parser-combinator tool is a library that provides these
combinator functions—where each of these functions returns
a parser object that can be called on input. On a successful
parse, these parsers return an abstract syntax tree (AST) to
provide access to these parsed objects.

Although parser combinators are standard in the functional
programming world, Hammer [35] and Nom [10] were among
the first parser combinators to be introduced in systems pro-
gramming. Hammer is a C-based parsing library that provides
bindings in several languages. Whereas Nom is a Rust-based
zero-copy parsing library.

D. Data Formats

Table I lists the file formats, DDLs, and LLMs we leverage
in this paper. The data formats selected are widely used
and often straightforward (unlike PDF or Microsoft Office
formats). For example, network protocols such as Network
Time Protocol (NTP), Address Resolution Protocol (ARP), and
Message Queuing Telemetry Transport (MQTT) protocol are
all limited in the number of fields and the values each field
can take.

III. EXPERIMENTAL SETUP

To study the research questions posed, we built a system that
sends a sequence of prompts (Table II) to the set of LLMs.
The first three prompts are provided sequentially, building
on previous context. The prompt to fix errors is tried up
to three times with previously encountered error messages.
Figure 3 provides an overview of our approach. We selected
20 popular data formats spanning network protocols and file
formats. For each of these data formats, we identified the
specification versions, RFC numbers, and URLs when RFCs
were not available. We selected six popular DDLs that are
capable of describing a wide range of formats.

We prompted each LLM to generate a file in a specific data
format using a particular DDL syntax. We stored these files

and ran a compiler or syntax checker to ensure the produced
file was syntactically valid. We prompted the LLMs to correct
the DDL file with an error message in the event of syntax
errors. We attempt to resolve the DDL in three subsequent
prompts, in addition to the original query.

While the same DDL file is overwritten when an LLM
produces an improved specification, we store intermediate
results in an SQLite database. The database stores the LLM
response and other metadata, such as the number of attempts
and whether the response was compiled successfully.

Since parser-combinator libraries are essentially in the target
programming language (C for Hammer and Rust for Nom), the
parsing function needs to be invoked in the main function. As
part of the prompts, we asked the LLMs to produce code that
can take a binary input file as a command-line input to ensure
that we can easily compare implementations. Additionally,
to evaluate these DDLs, working implementations of each
DDL compiler and execution engine were needed. To aid
future researchers, we created a Docker image with working
implementations of each compiler.

A. Data Collection

We provided the LLMs with the specification or RFC ver-
sion numbers and the full name of the format to provide them
with sufficient information to produce DDL files. For RQ4,
we also provided the LLMs with five sample specifications
in DDL syntax, which we collected from the DDLs’ GitHub
repository.

To evaluate the generated parsers, we collected files from
the GovDocs1 corpus, which contains a total of 986,278 files
across PDFs, images, source code, and various Microsoft
Office files [16]. We leveraged this corpus to collect PNG
(4,125), JPEG (109,283), and GIF (36,302) files. We sourced
various packet captures from the Wireshark GitHub repository
and website for various common network protocols, like NTP.
We relied on packet captures from NYPA’s AGILe lab to test
Modbus and ARP implementations [32].
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Fig. 3. Overall workflow of the experimental system. The overall goal of the project is to construct a library of parsers for each DDL.

B. Large Language Models

Many LLMs are available today, each catering to different
needs and offering various features, such as improved reason-
ing, faster performance, higher intelligence, and different sizes
(based on context lengths).

For our research, we selected seven different models from
various companies, including proprietary and open-source
options. The models chosen are from leading companies
known for offering high-performing yet cost-effective models
in the industry. We selected OpenAI’s GPT-4 Turbo and
GPT-4o [33], Anthropic’s Claude Sonnet 3.5 and Claude 3.5
Haiku [2], and Google’s Gemini 1.5 Flash [17]. Additionally,
we experimented with open-source models from DeepSeek
Chat V3 [12] and Meta’s latest Llama 3.3 [28]. Few of these
models reported improved context-retention capabilities over
long context windows, when compared to their predecessors.
Models in the Gemini 1.5 family even demonstrated strong
performance in long-context benchmarks like the Needle-in-
a-Haystack task [11].

For all models except Llama 3.3, we obtained direct access
to the API from the respective organizations for a fee based
on the model type and the number of tokens used. An API key
is required to interact with a model through an API request.
For Llama 3.3, we used Together AI’s hosting infrastructure,
which offers cloud-based access to open-source models for a
nominal token-based fee. This approach is advantageous for
users lacking the computational resources to deploy LLMs
locally.

Among the myriad variables influencing LLM performance,
temperature is one such parameter governing output variability.
Temperature modulates the randomness of model-generated re-
sponses: at a setting of 0, the model operates deterministically,
yielding identical outputs for identical prompts. Conversely,
as the temperature increases, response diversity and creative
expression become more pronounced, introducing greater vari-
ability in output. API-based models grant users explicit control
over this parameter, offering a crucial degree of flexibility in
experimentation.

Following prior work, we varied the LLM temperature
setting from 0, 0.25, 0.5, 0.75, and 1 for all our LLMs to

test variability in the outputs [36].
Another critical parameter is the max tokens setting, which

dictates the maximum number of tokens an LLM can generate
in response to a single request. We standardized this parameter
across all models at 2048 tokens to ensure uniformity in
evaluation. Notably, the total number of tokens, comprising
both input and generated tokens, must remain within the
model’s designated context length. By capping max tokens, we
aimed to mitigate discrepancies arising from differing default
token limits across various LLM architectures.

a) Understanding and Retrieving Specifications: The
first query asked the LLM whether it recognized and under-
stood the specifications for a particular standard. If it did, it
was prompted to share the full specification. This step was
crucial in determining whether the model had prior knowledge
of the topic and could provide accurate details. Studies have
shown that explicitly establishing context in initial prompts
leads to improved coherence in LLM responses [53].

b) Generating Structured Specifications: Once the model
confirmed its understanding, it was instructed to use that
knowledge to generate specifications in specific structured
formats. For instance, if the task required defining a file format
or network protocol, the model was asked to produce the
specification in a DDL syntax. The generated output was then
compiled and checked for correctness.

c) Error Handling and Iterative Correction: If errors
were encountered on compilation, they were extracted and
used to generate a follow-up prompt. The model was then
asked to refine its response based on the error message and
return a corrected version of the specification. This process
was repeated thrice, with each iteration evaluating whether
the generated code had been compiled successfully.

To ensure context retention, each subsequent prompt in-
cluded all prior interactions. This method maintained conti-
nuity in the conversation, preventing the model from losing
track of prior interactions. However, one inherent limitation of
this approach is the constraint imposed by the model’s context
window. If the conversation exceeds the model’s context limit,
earlier messages are truncated, leading to the potential loss of
critical details. This constraint is why we restricted the iterative
correction process to three cycles.



IV. RQ1: ZERO-SHOT DSL CODE GENERATION

To explore this research question, we studied the responses
provided by various LLMs when we prompted them to provide
a specification in the DDL syntax. We sent each LLM between
2000 and 4000 queries.

Figure 4 shows heatmaps denoting all six DDLs: Kaitai
Struct, DaeDaLus, Zeek Spicy, Rust Nom, DFDL, and Ham-
mer. The specifications produced by LLMs for DFDL re-
sembled valid XML but contained syntactic errors that the
LLMs were not able to fix when provided with the error
messages. As a result, we were unable to construct a single
DFDL specification that could compile. Appendix C shows
the commands we used on all the DDLs to check for syntactic
validity.

a) Kaitai Struct: We used Kaitai Struct’s compiler to
generate Python files. These files contain a class that can be
invoked with a byte array passed as an argument. These classes
throw an exception when the parsing fails at any point. During
the compilation stage, the compiler throws syntax errors that
we can provide back to the LLM to improve the results.
Figure 4 shows that many LLMs could produce valid files
since Kaitai Struct uses a standard YAML syntax. However,
Gemini could not produce any valid Kaitai Struct YAML files,
whereas Llama only produced one.

b) Hammer: We prompted the LLMs to produce a C
program that takes a binary file as a command-line argument
and invokes the Hammer parser on it. In the case of Hammer
parsers, the GPT models are not very successful at producing
valid files. In comparison, Claude 3.5 Sonnet and Deepseek
V3 produce many valid files.

c) DaeDaLus: We invoke the DaeDaLus compilation
command on the .ddl files to check for syntactic validity.
Unfortunately, other than Gemini, no other models were
able to produce valid DaeDaLus specifications. However,
all of these were empty files simply containing a place-
holder comment. While these files compiled successfully,
none of the five syntactically valid DaeDaLus files cover
any portion of the specifications. Following is an example of
the content in the compiling DaeDaLus specifications: “--
This is a placeholder. A complete DaeDaLus
specification for the NITF standard is not
feasible.”.

d) Spicy: To compile Spicy specifications, we use the
spicyc compiler that produces an executable file that can
be invoked with the spicy-driver. We see in Figure 4,
that Claude 3.5 Sonnet produces the most compiling Spicy
files. In addition, Claude 3.5 Sonnet, GPT 4 Turbo, and
Deepseek V3 all produced multiple valid Spicy files for
the ARP protocol. Similar to the issues with Gemini and
DaeDaLus specifications, we see that the compiling DI-
COM specification produced by Gemini in Spicy syntax
only contains a comment: “# This is an incomplete
placeholder. A full DICOM specification is
impossible in Zeek Spicy.”.

e) Rust Nom: All LLMs produced multiple valid specifi-
cations for each data format using the Rust Nom library. There

are numerous web pages and sample specifications available
for the Nom library and the Rust programming language in
general, enabling all LLMs to produce valid files. As part of
the following research questions, we validate the accuracy of
these specifications.

As we described in Section III, we allowed LLMs to use
multiple tries to produce compilable DDL code by providing
compiler error messages. We measured the number of attempts
needed by each LLM for various DDLs. Appendix B includes
a table showing the number of attempts taken by each LLM
to produce an implementation that compiles for DDL speci-
fications. We saw that while LLMs do get the syntax correct
on the first try, they often need the error messages to rectify
any syntax errors.

A. Effect of Temperature on Compilation

Following prior work, we studied the effects of varying
temperatures on the compilation rates. As shown in Figure 6,
we see that the temperature settings cause minor variations
in compilation rates. However, across each LLM, these rates
are only marginally different. We do not see any particular
temperature setting having a higher compilation rate across
all LLMs.

Figure 5 shows the lines of code generated by various LLMs
for the Address Resolution Protocol (ARP) parsers in Kaitai
Struct, Hammer, and Rust Nom. ARP is a simple protocol for
which all the LLMs produced Rust Nom code that compiled,
and most LLMs produced Kaitai Struct code that compiled.
We did not see trends showing that one temperature setting
reliably produced higher lines of code.

Renze et al. [38] noted that varying the temperature from
0 to 1 had no statistically significant effect on accuracy for
problem-solving tasks. We see similar behavior in our study,
showing that changing the temperatures did not directly impact
the compilation rates or the lines of code produced.

B. Code generated by Llama

While Figure 4 shows that Llama produced C code that
compiled, many of these C programs no longer contained
the Hammer library. Within the first few tries, when we
provided the error message to these LLMs with the instruction
to fix them, Llama defaulted to removing the entire library
and sticking to simple C structs with memcpy instructions.
Appendix A shows two code snippets of ARP specifications
produced by Llama demonstrating the above issues. The first
snippet shows the incorrect Hammer specification and the
second snippet shows a C file that compiles successfully but
does not use the Hammer library at all.

Result 1: In this section, we saw that LLMs generate syntactically
valid files in Spicy, Kaitai Struct, Hammer, and Nom. Despite
error messages and several attempts to repair files, they could not
produce valid specifications in DaeDaLus and DFDL. Claude 3.5
Sonnet had the highest compilation rates across all temperature
settings.



Fig. 4. Heatmaps showing the number of successful compilations across the five temperature settings, where each value is out of five. These heatmaps show
the following models — G: Gemini 1.5 Flash, G4: GPT 4 Turbo, GO : GPT 4.0, CS : Claude 3.5 Sonnet, CH : Claude 3.5 Haiku, D: Deepseek V3, L: Llama
3.3 70B.



Fig. 5. Lines of code in ARP parsers generated in the Kaitai Struct, Rust Nom, and Hammer formats. These values are varied across different temperature
settings to show how the lines of code generated vary based on the temperature settings. Note: The values set to 0 did not compile.

Fig. 6. Comparison of LLMs in different temperature settings and their
compilation percentages.

V. RQ2 AND RQ3: EVALUATING GENERATED PARSERS

Although it is helpful to know that LLMs produce syntac-
tically valid DDL specifications, ascertaining their correctness
presents a challenge. To establish a fully validated specifi-
cation gallery covering several data formats in DDL syntax,
we would need to holistically validate the specifications with
a large corpus and differentially test these implementations
with real-world libraries. However, in this paper, to validate
the correctness of the generated specifications, we propose a
two-fold validation. We picked two file formats (JPEG and
GIF) and two network protocols (Modbus [29] and ARP),
since these data formats had several compiling specifications
in Kaitai Struct, Hammer, and Nom. First, we collected a
corpus of valid files and packet captures. These files were
then provided to all previously compiled DDLs. Next, we
constructed a corpus of invalid files using the Fuzzing Book
Mutation Fuzzer [52]. We produced three mutated files for
each valid file in our corpus. The validity of each image file
was established using the Pillow library [22], whereas we used
Wireshark to check the validity of network packets. For the
mutated files, we ensured that Pillow and Wireshark were
unable to parse these files successfully.

Table III summarizes the results of our evaluation of pre-
cision. The cells with “-” denote cases that did not compile,
and the cells with “N/A” denote implementations that did not



TABLE III
PRECISION SCORES ACROSS DIFFERENT MODELS, FILE FORMATS, AND TEMPERATURE SETTINGS.

Formats Temp. Kaitai Struct Hammer Rust Nom
G G4 GO CS CH D L G G4 GO CS CH D L G G4 GO CS CH D L

0.0 -a N/Ab - N/A - - - - 0.45 - N/A - N/A 0.42 0.42 0.42 0.42 0.42 - 0.42 0.00c

0.25 - N/A N/A N/A - - - - - 0.42 N/A - - - 0.42 - 0.42 0.40 N/A - 0.44
JPEG 0.5 - N/A N/A N/A N/A - - - 0.42 - N/A - - - - 0.42 0.42 0.42 0.45 0.42 N/A

0.75 - N/A N/A N/A N/A - - - - N/A N/A N/A N/A - 0.42 - 0.42 0.42 0.42 0.42 -
1.0 - N/A N/A N/A N/A - - - - - N/A - - - 0.42 0.42 0.42 0.42 N/A 0.42 -
0.0 - - N/A 1.00d - - - - - - 0.66 - - N/A 0.50 - 0.50 0.50 N/A 0.50 0.50

0.25 - - N/A 1.00 - - - - - - 0.66 - 0.66 - 0.50 - 0.50 0.50 0.50 - -
GIF 0.5 - - N/A 1.00 - - - - - - 0.66 N/A 0.66 0.50 0.56 0.50 0.50 0.50 N/A - -

0.75 - - N/A 1.00 - 1.00 - - - 0.00 1.00 N/A 0.65 - - 0.50 0.50 0.50 - - -
1.0 - - N/A 1.00 - 1.00 - - - - 0.66 - 1.00 N/A 0.50 0.51 0.50 0.95 1.00 - -
0.0 - 1.00 N/A 0.02 1.00 N/A - - - N/A 1.00 - 1.00 - 0.74 0.74 0.74 1.00 N/A 0.74 0.92

0.25 - 1.00 N/A 0.02 1.00 N/A - - - 0.90 1.00 1.00 1.00 - 0.74 0.74 0.81 0.74 N/A 0.74 -
Modbus 0.5 - 1.00 N/A 0.02 1.00 N/A - - 0.74 - 1.00 - 0.74 0.74 0.74 0.81 1.00 0.74 N/A 0.74 0.91

0.75 - 1.00 N/A 0.02 1.00 N/A - - 1.00 - 1.00 - N/A 0.74 0.74 0.74 0.74 0.74 1.00 0.74 0.74
1.0 - 1.00 N/A 0.02 1.00 N/A - - - 1.00 1.00 N/A N/A 0.74 0.74 0.81 0.74 - 0.92 0.74 0.75
0.0 - - - 1.00 1.00 1.00 - - - 1.00 0.33 - 0.33 0.38 0.33 0.33 0.33 1.00 1.00 0.33 0.33

0.25 - - - 1.00 1.00 1.00 - - - - 0.38 - 0.38 0.33 0.33 0.33 0.33 1.00 1.00 0.33 0.33
ARP 0.5 - - - 1.00 1.00 1.00 - - - - 0.38 - N/A - 0.33 0.33 0.33 1.00 1.00 0.33 0.33

0.75 - - - 1.00 1.00 1.00 - - - - - - - 0.33 0.33 0.33 0.33 1.00 1.00 0.33 0.33
1.0 - - - 1.00 1.00 1.00 - - - 0.38 1.00 N/A 0.38 0.33 1.00 0.33 0.33 1.00 0.38 0.33 0.38

a-: denotes cases that did not compile.
bN/A: denotes cases that did not produce any successful parses.
c0.00: denotes cases where valid files were not parsed, but files we categorized as invalid parsed successfully.
d1.00: denotes cases where we did not parse any invalid files.

produce any successful parses.2 A precision of 1.0 demon-
strates that there were no false positives produced. Parsers
that accept false positives (invalid files from our corpus) are
permissive. We see that none of the JPEG specifications in
Hammer successfully parsed any JPEG images in our corpus.
However, we observe that far more GIF parsers in Kaitai
Struct and Hammer were able to parse files compared to JPEG
parsers.

We observe that none of the JPEG parsers achieved a
precision of 1.0, whereas the Hammer-based GIF parsers
developed by Claude Haiku and Deepseek were able to achieve
this. Similarly, several LLMs could produce valid descriptions
for Modbus and ARP, given their relatively straightforward
syntax.

Result 2: LLM-produced parsers often agreed with other real-
world parsers we used as baselines for simpler data formats. JPEG
and GIF parsers missed large portions of the specification. The
parsers produced for easier network protocols, such as Modbus
and ARP, covered all valid inputs across DDLs.

Table IV summarizes the recall values for our experiment.
We see that, in general, many of the generated Nom specifi-
cations accepted invalid inputs compared to the Kaitai Struct
and Hammer implementations.

None of the JPEG or Modbus implementations met the
correctness criteria we set: precision and recall of 1.0. Kaitai
Struct specifications, in general, had many cases of valid spec-
ifications. For example, the GIF implementations produced by
Claude 3.5 Sonnet in the Kaitai Struct syntax, and all the ARP
specifications in Kaitai Struct that compiled were found to be
correct. Similarly, several specifications in Rust Nom for ARP
were accurate.

2No successful parses of input files result in a denominator of 0 in the
calculation of precision.

Since recall calculations account for false negatives (valid
inputs incorrectly categorized as invalid), values less than 1
denote that the parser produced false negatives. A recall of 0
implies that there were no true positive values.

Result 3: As we hypothesized, we found that the generated parsers
for Modbus and JPEG were permissive, parsing several malformed
inputs without issues. However, the LLMs were able to produce
several correct specifications for GIF and ARP in the Kaitai Struct
and Rust Nom syntax.

VI. RQ4: LEARNING A DDL SYNTAX

This research question shifts the focus to evaluating whether
LLMs can be assisted in learning the syntax of unfamiliar
DDLs to improve their ability to generate syntactically valid
specifications. In RQ1, we tested whether different LLMs
could inherently generate valid code across various DDLs, data
formats, and network protocols. We used zero-shot learning,
which required LLMs to perform tasks without prior examples.

Since LLMs could not provide many compiling specifica-
tions in DDLs, such as DaeDaLus and Spicy, we conducted
experiments assessing their ability to generate syntactically
valid specifications when supplied with the DDL manual and
sample specifications in the DDL syntax.

A. Providing Manuals as Context

To aid learning, we supplied LLMs with official manu-
als for six different DDLs: DFDL, DaeDaLus, Zeek Spicy,
KaitaiStruct, Hammer, and Rust Nom. These manuals were
obtained from their respective official websites in PDF format.
Table V outlines the number of sample specifications available
in the GitHub repository or the DDL’s website. Kaitai Struct’s
format library is comprehensive and contains numerous file
format descriptions. The Hammer repository contained a few



TABLE IV
RECALL SCORES ACROSS DIFFERENT MODELS, FILE FORMATS, AND TEMPERATURE SETTINGS

Formats Temp. Kaitai Struct Hammer Rust Nom
G G4 GO CS CH D L G G4 GO CS CH D L G G4 GO CS CH D L

0.0 -a 0.00b - 0.00 - - - - 0.37 - 0.00 - 0.00 1.00c 1.00 1.00 0.94 1.00 - 1.00 0.00
0.25 - 0.00 0.00 0.00 - - - - - 1.00 0.00 - - - 1.00 - 0.94 0.74 0.00 - 1.00

JPEG 0.5 - 0.00 0.00 0.00 0.00 - - - 1.00 - 0.00 - - - - 0.95 0.94 1.00 1.00 1.00 0.00
0.75 - 0.00 0.00 0.00 0.00 - - - - 0.00 0.00 0.00 0.00 - 1.00 - 0.94 1.00 1.00 1.00 -
1.0 - 0.00 0.00 0.00 0.00 - - - - - 0.00 - - - 1.00 1.00 1.00 1.00 0.00 1.00 -
0.0 - - 0.00 1.00 - - - - - - 0.34 - - 0.00 1.00 - 1.00 1.00 0.00 1.00 1.00

0.25 - - 0.00 1.00 - - - - - - 0.34 - 0.34 - 1.00 - 1.00 0.99 1.00 - -
GIF 0.5 - - 0.00 1.00 - - - - - - 0.34 0.00 0.34 1.00 0.97 1.00 1.00 1.00 0.00 - -

0.75 - - 0.00 1.00 - 0.11 - - - 0.00 0.00 0.00 0.34 - - 1.00 1.00 1.00 - - -
1.0 - - 0.00 1.00 - 0.11 - - - - 0.34 - 0.01 0.00 0.99 1.00 1.00 0.70 0.00 - -
0.0 - 0.00 0.00 0.00 0.00 0.00 - - - 0.00 0.50 - 0.67 - 1.00 1.00 1.00 0.33 0.00 1.00 0.43

0.25 - 0.00 0.00 0.00 0.00 0.00 - - - 0.67 0.67 0.67 0.67 - 1.00 1.00 1.00 1.00 0.00 1.00 -
Modbus 0.5 - 0.00 0.00 0.00 0.00 0.00 - - 1.00 - 0.67 - 1.00 1.00 1.00 1.00 0.67 1.00 0.00 1.00 0.41

0.75 - 0.00 0.00 0.00 0.00 0.00 - - 0.67 - 0.33 - 0.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00
1.0 - 0.00 0.00 0.00 0.00 0.00 - - - 0.67 0.50 0.00 0.00 1.00 1.00 1.00 1.00 - 0.40 1.00 0.47
0.0 - - - 1.00 1.00 1.00 - - - 0.15 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.25 - - - 1.00 1.00 1.00 - - - - 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ARP 0.5 - - - 1.00 1.00 1.00 - - - - 1.00 - 0.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.75 - - - 1.00 1.00 1.00 - - - - - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 - - - 1.00 1.00 1.00 - - - 1.00 0.15 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

a-: denotes cases that did not compile.
b0.00: denotes cases where valid files were not parsed.
c1.00: denotes cases where we did not incorrectly mark any valid files as invalid.

TABLE V
DATA DESCRIPTION LANGUAGES USED IN OUR STUDY

Number of Publicly Manual
DDL Accessible Specifications Size (pages)
Hammer 5 26
Rust Nom 72 262
Kaitai Struct 173 141
DaeDaLus 20 76
Zeek Spicy 8 165
DFDL 31 149

examples, and in addition, some full specifications for network
formats are publicly available.

The LLM APIs do not support uploading PDFs as input and
require converting them to plain text. This often results in the
loss of critical formatting. Hence, we opted to upload the PDFs
directly into LLM chat interfaces that support attachments.
Unfortunately, this approach was not automated like our other
experiments.

We encountered several challenges in this process. Some
manuals were too large to upload (e.g., Rust Nom exceeded
100MB), while others contained numerous images and com-
plex formatting, making them difficult to process. To address
this, we split these manuals into smaller sections, but some
chat interfaces ran into “processing failed” errors. Given these
limitations, we narrowed our focus to DaeDaLus and Spicy
and tested their ability to generate specifications for the JPEG
and Modbus protocols.

The prompt structure for this experiment is outlined in
Table II. We attached the full manual for these two DDLs
with the prompt and asked the models to generate a spec-
ification. We evaluated Gemini, ChatGPT-4, Claude Sonnet
3.5, and DeepSeek Chat. Following the methodology outlined
in Section IV, after generating a specification, we compiled

the output and, if errors occurred, fed the error messages
back to the models. This iterative process was repeated up
to three times to determine whether the models could refine
their outputs into a compiling specification.

TABLE VI
RESULT OF PROMPTING LLMS WITH DAEDALUS AND SPICY MANUALS

FOR JPEG AND MODBUS PROTOCOLS

DDL Formats Gemini ChatGPT-4 Claude DeepSeek
Sonnet 3.5 Chat V3

DaeDaLus JPEG ✗ ✗ ✗ ✗
Modbus ✗ ✗ ✗ ✗

Spicy JPEG ✗ ✗ ✗ ✗
Modbus ✗ ✗ ✓ ✓

As presented in Table VI, none of the models success-
fully generated a compiling DaeDaLus specification, even
after three attempts. For Spicy, only Claude Sonnet 3.5 and
DeepSeek Chat successfully generated a compiling Modbus
specification, whereas all other models failed across all for-
mats.

These findings indicate that while LLMs can process and
understand manuals, they lack sufficient training data to inter-
nalize syntax patterns from documentation alone. This aligns
with prior research on LLM-based program synthesis, which
highlights that models require large-scale, diverse datasets to
generalize across unseen syntax [3], [19].

B. Including Example Specifications for In-context Learning

We collected real-world specification samples from offi-
cial GitHub repositories for both DaeDaLus and Spicy to
investigate whether additional examples would enhance per-
formance. We provided five sample protocols (BSON, ICC,
JSON, MDM, PDF for DaeDaLus and PNG, DHCP, DNS,
HTTP, LDAP for Zeek Spicy) in text format via the models’



Fig. 7. In-context learning: Heatmaps showing the number of successful
compilations for Spicy specifications for JPEG and Modbus protocols. (left)
Zero-shot learning without any samples. (right) In-context learning with five
sample specifications provided for syntax examples.

API, prompting them to generate new specifications. Each
experiment was conducted across five different temperature
settings, with three attempts per setting to assess consistency
in results.

Figure 7 shows the results of these experiments on Spicy
specifications for JPEG and Modbus formats. Compared to the
case where we used Zero-Shot prompting (Figure 4), more
compiling specifications were generated for Spicy syntax.
For DaeDaLus, no models successfully generated compiling
specifications for either JPEG or Modbus, even with the added
samples.

For Spicy (JPEG format), DeepSeek improved and gener-
ated a compiling specification, a notable advancement com-
pared to the zero-shot condition, where all models failed. For
Spicy (Modbus protocol), the inclusion of samples led to a
significant increase in success rates. As seen in the zero-shot
setting, only Claude Sonnet 3.5 produced a compiling specifi-
cation, but with few-shot learning, GPT-4o, Claude Sonnet 3.5,
Claude Haiku, and DeepSeek V3 generated compiling outputs
when provided with samples.

Attaching manuals alone was insufficient, but when the
models were supplemented with few-shot prompts instead of
zero-shot, performance improved, highlighting the importance
of in-context learning [8]. These results suggest that LLMs
require contextual knowledge and real-world samples to ef-
fectively generate valid specifications for unfamiliar DDLs to
bridge the gap between theoretical knowledge and real-world
usage patterns.

Result 4: We picked DaeDaLus and Spicy in this study, given
their lower compilation rates across all LLMs. We see that despite
providing the manual and sample specifications (independently),
LLMs are not able to produce valid DaeDaLus specifications for
JPEG and Modbus formats. However, we see more success in
generating valid Spicy files for these data formats.

VII. RELATED PRIOR WORK

Since the release of large language models, researchers have
explored numerous directions to see how these tools perform
various tasks that programmers have historically performed
manually.

3DGen [15] is the closest related work to our paper.
Fakhoury et al. demonstrate how they used an LLM to generate
3D specifications from RFC documents. They provided these
RFC documents to an LLM and used the 3D specifications to

generate valid and invalid inputs using Z3 queries. They then
used the counterexamples to improve 3D specifications.

We build on these ideas to evaluate different LLMs, temper-
ature settings, and DDLs on a wide variety of data formats that
may not have standardized RFC documents. We hypothesized
that LLMs may already hold sufficient information about the
syntactic structures of various data formats and do not need
additional information in the form of specifications.

A. Using LLMs for Code Generation

As discussed in this paper, producing a complete domain-
specific-language (DSL) input from a format specification
document is daunting. Several researchers explored this prob-
lem even before LLMs gained prominence. Desai et al. [13]
demonstrated synthesizing programs in DSL syntax using
natural language inputs. Lei et al. [25] present an approach
to convert text specifications of inputs to a C++ parser. Wang
et al. [46] introduce Grammar Prompting, where they provide
a grammar in the Backus-Naur Form (BNF) to guide LLMs
to generate valid language outputs. Their work demonstrates
that LLMs can understand and provide inputs that adhere to
the BNF grammar.

B. Language-Theoretic Security

Several researchers in the field of LangSec and Network
Security have used LLMs for several applications. Sharma
et al. [42] presented PROSPER, an approach to extracting
specifications from RFCs using LLMs. Chen et al. [9] explore
extracting state machines from implementations by providing
LLMs with source code. Ackerman et al. [1] leveraged LLMs
to produce inputs to a fuzzer and demonstrate how they
could get better coverage than simple mutation-based input
generators. Finally, Meng et al. [27] used LLMs to generate
network packets and packet sequences as fuzzer inputs and
showed how their LLM-guided fuzzer explored more states
and code than other fuzzers. Our paper explores a similar
hypothesis that off-the-shelf LLMs already hold sufficient
information about message types and fields in popular data
formats.

VIII. DISCUSSION

We comprehensively evaluated LLMs’ ability to gener-
ate data format specifications in various DDL syntaxes. We
showed that these LLMs can be advantageous tools for re-
searchers and engineers to create parsers in DDL syntax. In
the rest of this section, we discuss our work’s limitations and
future directions.

A. Minimizing Hallucination Risks

LLMs are known to hallucinate results—providing incor-
rect, misleading, and outright fabrications. Our study focused
on evaluating LLMs for the task of parser generation. While
we released the dataset generated by our study, the spec-
ifications available are not entirely validated to cover all
components of the specifications. Tonmoy et al. [45] present
a study of various hallucination reduction techniques ranging



from prompt engineering to fine-tuning. While hallucination is
a realistic concern, leveraging extensive testing on real-world
data and differential testing with existing implementations of
formats can mitigate the risk.

B. Reproducibility Challenges

LLMs are inherently non-deterministic, often generating
different outputs for the same input prompts. This variability
stems from stochastic processes involved in their training and
inference. As a result, LLMs are highly unstable, making the
reproducibility of research relying on them difficult.

Empirical studies have demonstrated the extent of this
issue. For instance, Ouyang et al. [34] found that ChatGPT
exhibits substantial variability in code generation, with a high
percentage of tasks producing non-identical outputs even under
identical prompts. Notably, setting the temperature parame-
ter to zero—which is intended to reduce randomness—did
not fully eliminate non-determinism, indicating that model-
internal processes contribute to output variations beyond just
probabilistic sampling. Researchers must account for non-
determinism when evaluating and utilizing LLMs to effectively
manage variations in output for identical inputs.

To mitigate this challenge, we specify the temperature
setting and tagged model version for each LLM. Our prompts
also try to ensure that the LLMs provide the complete response
as code without wrapping any additional markdown around it.
Additionally, since we allow the LLM to attempt error correc-
tion over three iterations, we believe this provides sufficient
opportunities for the model to refine and correct any mistakes.

While these do not entirely mitigate the challenges, we
believe that by publicly providing the details of the models, all
the code, and prompt responses, other researchers can leverage
our tooling to produce specifications using LLMs.

C. Guidelines for new DDLs and Automated Generation

LLMs were able to produce data descriptions that compiled
and were accurate in the Hammer (C programming language),
Rust Nom, and Kaitai Struct. We found that this holds across
different temperature settings and data formats. Hence, lever-
aging parser combinators that are embedded in programming
languages would enable LLMs to produce accurate data de-
scriptions when provided with API manuals. DDLs with their
own syntax, such as DaeDaLus, Parsley, and Spicy, present
a challenge for LLMs. We found that with five example
specifications, LLMs were able to produce some compiling
specifications in Spicy, but not in DaeDaLus. As a result,
we recommend that DDLs use standardized syntax, such as
YAML or JSON, to describe the data format.

D. Future Directions

1) Using Copilot to edit DDL Specifications: Practically,
we envision researchers and software developers using Copilot
chat or the shortcuts within VSCode to generate and edit DDL
specifications. However, the efficacy of this methodology in
building parsers would need to be thoroughly studied using
user studies.

2) Patching Specifications based on rejected inputs:
Fakhoury et al. [15] discussed how 3DGen could take parsing
error messages and make corrections to specifications based
on these error messages. We will investigate how this can be
implemented for all DDLs in future research. Unfortunately,
in our experience, the error messages provided by parsers are
often not more descriptive than “parsing failed.”

3) Translations between DDLs using LLMs: Some tools,
such as Wireshark and Kaitai Struct, provide extensive repos-
itories covering a wide range of network protocols and file
formats. We believe that LLMs could also be used to translate
existing specifications from one DDL to another.

4) Systematically exploring what file format features pre-
vent accurate LLM-generated specifications: File formats
contain a wide range of syntactical features, such as lookup
tables, length fields, chunks, etc. A potential future direction
is to investigate whether LLMs recognize that some DDLs,
primarily designed for network protocols (such as Spicy), may
lack the necessary constructs to express the syntax of file
formats.

5) Differential Fuzzing: In this paper, we validated the
parsers produced by LLMs using a corpus of valid and
invalid files. However, in practice, researchers should leverage
differential fuzzing and testing to ensure that the generated
parsers perform as well as off-the-shelf libraries [24]. We must
perform rigorous validation before building a format gallery
containing LLM-generated parsers for various DDLs.

6) Using Reasoning Language Models and Structured Out-
puts: Experimenting with reasoning language models, such
as Claude 3.7 Sonnet, DeepSeek-R1, and OpenAI o3, in the
next steps will be a promising direction, given their multi-
step reasoning capabilities and improved self-correction during
inference. There is potential to generate more accurate outputs
on the first prompt itself. Though this would not eliminate the
iterative feedback loop, the feedback loop remains essential
for evaluating whether the DDL compiles successfully. Any
compilation errors are sent again to the model as input to
refine the subsequent outputs. In this paper, we used models
that were released before December 2024. Most of the above
reasoning language models were released only a few weeks
before the paper submission deadline. In addition to using
reasoning language models, we would also like to explore
the use of structured outputs, such as Guidance [18], where
we want the models’ output to be in a specific format. This
approach can effectively reduce the number of syntactical
errors and minimize the iterations needed to correct them.
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APPENDIX A
OUTPUT EXAMPLES FOR LLAMA

The code snippet below was given in the 1st attempt for
the ARP protocol format for the parser combinator library
Hammer. This code did not compile and contained numerous
errors, such as the absence of the function hammer bytes or
hammer uint8.

hamm er pa r s e r t * a r p p a r s e r ( ) {
hamm er pa r se r t * hw type = hammer uin t16 be ( ) ;
hamm er pa r se r t * p r o t o t y p e =hammer uint16 be ( ) ;
hamm er pa r se r t * hw len = hammer uint8 ( ) ;
hamm er pa r se r t * p r o t o l e n = hammer uint8 ( ) ;
hamm er pa r se r t * op = hammer uint16 be ( ) ;
hamm er pa r se r t * sender mac = hammer bytes

(ETHER ADDR LEN ) ;
hamm er pa r se r t * s e n d e r i p = hammer uint32 be ( ) ;
hamm er pa r se r t * t a r g e t m a c = hammer bytes

(ETHER ADDR LEN ) ;
hamm er pa r se r t * t a r g e t i p = hammer uint32 be ( ) ;

We provided Llama with the compilation errors from the
above snippet and prompted it to provide a fixed implemen-
tation. The code snippet below removed the entire parser
combinator library and relied on C standard libraries instead.

# i n c l u d e <s t d i o . h>
# i n c l u d e < s t d i n t . h>
# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t r i n g . h>

# d e f i n e ARP ETHERNET 1
# d e f i n e ARP IPV4 0 x0800

t y p e d e f s t r u c t {
u i n t 1 6 t h t y p e ;
u i n t 1 6 t p t y p e ;
u i n t 8 t h l e n ;
u i n t 8 t p l e n ;
u i n t 1 6 t ope r ;

} a r p h e a d e r t ;

APPENDIX B
MEASURING NUMBER OF ATTEMPTS NEEDED TO PRODUCE

SYNTACTICALLY VALID DDLS

Table VII shows the number of attempts taken by each
LLM to produce a specification that compiles for four DDLs.
We looked at the total number of compiling instances across
all temperature settings for each DDL and LLM pair and
categorized the number of tries it took to get successful
compilations. A0 denotes the first prompt asking an LLM to
provide a DDL file. A1 through A3 denote the three retries to
get a file that compiles.
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TABLE VII
A COMPARISON OF THE NUMBER OF ATTEMPTS TAKEN TO FIX

SPECIFICATIONS. An DENOTES THE nth ATTEMPT.

Kaitai Struct Hammer
Models Total A0 A1 A2 A3 Total A0 A1 A2 A3

G 0 0 0 0 0 3 3 0 0 0
G4 51 21 14 10 6 28 5 13 9 1
GO 60 13 25 17 5 19 1 5 6 7
CS 88 38 37 8 5 96 35 47 12 2
CH 53 15 15 16 7 25 4 3 6 12
D 37 14 15 5 3 71 14 29 19 9
L 1 0 1 0 0 56 0 23 18 15

Zeek Spicy Rust Nom
Models Total A0 A1 A2 A3 Total A0 A1 A2 A3

G 1 0 0 0 1 73 38 22 9 4
G4 8 0 3 4 1 66 38 17 8 3
GO 3 0 0 2 1 96 52 29 11 4
CS 32 3 12 6 11 95 54 37 4 0
CH 0 0 0 0 0 90 47 26 12 5
D 10 2 4 3 1 81 52 16 10 3
L 0 0 0 0 0 54 5 21 14 14

APPENDIX C
COMMANDS USED TO CHECK SYNTAX VALIDITY

Table VIII shows the commands we used to compile or
check the syntax of specifications for different DDLs.

TABLE VIII
COMPILATION AND VALIDATION COMMANDS

Library/DDL Command
Kaitai Struct kaitai-struct-compiler -t python

filename --outdir output_folder
Hammer gcc filename -o

output_folder/output -lhammer
DaeDaLus daedalus compile-hs filename

--out-dir output_folder
Spicy spicyc -j -o

output_folder/tmp.hlto filename
DFDL daffodil generate c -s filename

output_folder
Rust Nom cargo check
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