
Exploring Zero-Shot Prompting for
Generating Data Format Descriptions

Prashant Anantharaman and Vishnupriya Varadharaju
Narf Industries

15th May 2025

Work performed as part of ARPA-H-DIGIHEALS
program. Contract No. SP4701-23-C-0089

Building Parsers

● Instead of building a parser from scratch, all the constructs needed in parsers are
available in tools

2

● Parser Generators/Data Description Languages (DDLs):
○ Provide tools to describe a programming language grammar or data format
○ Generate parsers in target languages (Java, C++, Python, etc.)
○ Parse input and provide an AST or Object containing the parsed data
○ DFDL also offers serialization

● Parser Combinators:
○ Create smaller parsers for individual structures and combine them into larger ones
○ Written directly in the target programming language — no need to learn an entirely new language
○ Tools like Hammer (bindings in several languages) and Nom (Rust-based) are suitable for parsing target

binary data formats

DDL Syntax Examples

h_sequence(
 ...
 h_uint16(), // total_length
 h_uint16(), // identification
 h_uint16(), // flags & offset
 h_uint8(), // ttl
 h_uint8(), // protocol
 h_uint16(), // header_checksum
 h_repeat_n(h_uint8(), 4), //
src_ip_addr
 h_repeat_n(h_uint8(), 4), //
dst_ip_addr
 NULL
);

3

...
let (input, length) =
number::streaming::be_u16(input)?;
let (input, id) =
number::streaming::be_u16(input)?;
let (input, flag_frag_offset) =
flag_frag_offset(input)?;
let (input, ttl) =
number::streaming::be_u8(input)?;
let (input, protocol) =
ip::protocol(input)?;
let (input, chksum) =
number::streaming::be_u16(input)?;
let (input, source_addr)= address(input)?;
let (input, dest_addr)=address(input)?;
...

def IPv4_header_s =
 struct
 ...
 total_length : uint 16
 identification : uint 16
 b67 : uint 16
 ttl : uint 8
 protocol : uint 8
 header_checksum : uint 16
 src_ip_addr : [uint 8; 4]
 dst_ip_addr : [uint 8; 4]

Hammer Nom DaeDaLus

Derived from https://github.com/bestouff/pktparse-rs

DDL Syntax Examples (contd.)

seq:
 ...
 - id: total_length
 type: u2be
 - id: identification
 type: u2be
 - id: b67
 type: u2be
 - id: ttl
 type: u1
 - id: protocol
 type: u1
 - id: header_checksum
 type: u2be
 - id: src_ip_addr
 size: 4
 - id: dst_ip_addr
 size: 4

4

<xs:sequence>
 ...
 <xs:element name="Length"
type="b:bit" dfdl:length="16"/>
 <xs:element name="Identification"
type="b:bit" dfdl:length="16"/>
 <xs:element name="Flags"
type="b:bit" dfdl:length="3"/>
 <xs:element name="FragmentOffset"
type="b:bit" dfdl:length="13"/>
 <xs:element name="TTL" type="b:bit"
dfdl:length="8"/>
 <xs:element name="Protocol"
type="b:bit" dfdl:length="8"/>
 <xs:element name="Checksum"
type="chksum:IPv4Checksum"/>
 <xs:element name="IPSrc"
type="ip:IPAddress"/>
 <xs:element name="IPDest"
type="ip:IPAddress"/>
</xs:sequence>

type ip4_hdr: record {
...
len: count;
id: count;
DF: bool;
MF: bool;
offset: count;
ttl: count;
p: count;
sum: count;
src: addr;
dst: addr;

};

Kaitai Struct DFDL Spicy

Derived from:
https://github.com/DFDLSchemas/ethernetIP
https://github.com/zeek/zeek/blob/master/scripts/base/init-bare.zeek

Parser Methodology

5

Can LLMs automate some of
these tasks?

As more software engineers and security researchers use tools like Copilot to aid in software development, we investigate whether LLMs can aid in producing format specifications for

common protocols in Data Description Language syntax.

6

Research Questions

7

RQ1: Can off-the-shelf LLMs produce DDL code

that is syntactically valid?

H1: All LLMs must be able to produce some

sample specifications in each DDL syntax.

RQ2: Does the generated DDL code cover

100% of the format specification?

H2: LLMs tend to miss portions of the

specifications, and rarely accept all valid

sample inputs.

RQ3: Does the generated DDL code reject

malformed inputs?

H3: LLM-generated specifications would

accept several malformed inputs.

RQ4: Can LLMs learn the syntax of DDLs they

do not know using example specifications and

manuals?

H4: Being provided with specifications and

manuals, LLMs should be able to provide

compilable DDL specifications.

Research Questions

8

RQ1: Can off-the-shelf LLMs produce DDL code

that is syntactically valid?

H1: All LLMs must be able to produce some

sample specifications in each DDL syntax.

RQ2: Does the generated DDL code cover

100% of the format specification?

H2: LLMs tend to miss portions of the

specifications, and rarely accept all valid

sample inputs.

RQ3: Does the generated DDL code reject

malformed inputs?

H3: LLM-generated specifications would

accept several malformed inputs.

RQ4: Can LLMs learn the syntax of DDLs they

do not know using example specifications and

manuals?

H4: Being provided with specifications and

manuals, LLMs should be able to provide

compilable DDL specifications.

Research Questions

9

RQ1: Can off-the-shelf LLMs produce DDL code

that is syntactically valid?

H1: All LLMs must be able to produce some

sample specifications in each DDL syntax.

RQ2: Does the generated DDL code cover

100% of the format specification?

H2: LLMs tend to miss portions of the

specifications, and rarely accept all valid

sample inputs.

RQ3: Does the generated DDL code reject

malformed inputs?

H3: LLM-generated specifications would

accept several malformed inputs.

RQ4: Can LLMs learn the syntax of DDLs they

do not know using example specifications and

manuals?

H4: Being provided with specifications and

manuals, LLMs should be able to provide

compilable DDL specifications.

Research Questions

10

RQ1: Can off-the-shelf LLMs produce DDL code

that is syntactically valid?

H1: All LLMs must be able to produce some

sample specifications in each DDL syntax.

RQ2: Does the generated DDL code cover

100% of the format specification?

H2: LLMs tend to miss portions of the

specifications, and rarely accept all valid

sample inputs.

RQ3: Does the generated DDL code reject

malformed inputs?

H3: LLM-generated specifications would

accept several malformed inputs.

RQ4: Can LLMs learn the syntax of DDLs they

do not know using example specifications and

manuals?

H4: Being provided with specifications and

manuals, LLMs should be able to provide

compilable DDL specifications.

Approach

● Five temperature settings between 0 and 1.
● Three retries for compilation errors where the error messages are fed back

11

Prompt Templates

12

First Prompt You are a software developer who has read the {specification} for the {format}. Can you list all the fields in the
specification along with all the values each field can take?

Generate Scripts Can you use this knowledge to generate a {ddl} specification for the {format} in {output} format? Make sure to
cover the entire specification, including any optional fields. Do not provide any text response other than the
{format} specification. Show only the complete response. Do not wrap the response in any markdown.

Fixing Errors The previous response gave me an error. Can you use this error message: "{message}" to improve the
specification and give me an improved, complete, and fixed {ddl} specification in {output} format. Give me
only the complete generated code and no text with it. Ensure that the previous requirements are still met.

From Samples You are a software developer familiar with the {specification} for the {format}. Given various sample
specifications for different formats in {output}, use the insights from these samples to generate a
comprehensive {ddl} specification for {format} in {output} format. Ensure that the entire specification is
covered, including all optional fields. Provide only the complete {format} specification without any additional
text or markdown formatting. Here are sample specifications for reference {sample_text}.

Using Manuals Study the attached documentation carefully for {ddl} to answer my upcoming questions.You are a software
developer who has read the {specification} for the {format}. Can you use this knowledge and the {ddl}
documentation shared previously to generate a {ddl} specification for the {format} in {output} format? Make
sure to cover the entire specification, including any optional fields. Return the response containing only the
specification without any explanation.

Experimental Setup

13

RQ1 Results

Do generated specifications compile?

14

Compilation Success

15

Compilation Success (contd.)

16

Deep Dive into Generated Parsers

Hammer and Llama

Llama removes the entire library and
produces a struct and C parser from scratch

typedef struct {
 uint16_t htype;
 uint16_t ptype;
 uint8_t hlen;
 uint8_t plen;
 uint16_t oper;
} arp_header_t;

17

DaeDaLus and Gemini

This is an incomplete
placeholder. A full DICOM
specification is impossible in
Daedalus.

RQ2 and RQ3 Results

Evaluating the correctness of the compiled specifications

18

RQ2 and RQ3: Validating Specification Accuracy

Datasets:

● GovDocs1 for Image Files: PNG (4,125), JPEG
(109,283), and GIF (36,302)

● Wireshark GitHub Repository for NTP files
● New York Power Authority’s Lab for Modbus

packets

19

Precision: (Accepted valid inputs/Total
accepted inputs)

Recall: (Accepted valid inputs/Total valid inputs)

Invalid Files: Mutated each file at least three

times to produce invalid files using the Fuzzing

Book Mutation fuzzer.

Ground Truth: Used the Pillow Library for Image

files and Wireshark for network packets

Parser Correctness: Precision and Recall of 1.0

Precision

20

Recall

21

RQ2 and RQ3 Summary

● Totally 140 generations in Kaitai, Hammer,
and Nom each

○ 31 Kaitai, 19 Hammer, and 9 Nom implementations
accepted no inputs (valid or invalid) at all

● Observed 30 cases of perfect precision and
recall, but none in Hammer

○ 5 GIF implementations produced by Claude
Sonnet in Kaitai Struct syntax

○ 15 ARP implementations produced by Claude
Sonnet, Haiku, and Deepseek in Kaitai Struct

○ 10 ARP implementations produced by Claude
Sonnet and Haiku in Rust Nom syntax

● None of the JPEG and Modbus
implementations met the correctness
criteria set by us

22

RQ4 Results

23

Providing sample specifications and manuals

RQ4: Providing sample specifications and the manual

● Manuals are often PDFs or web pages. LLMs were not able to
understand much after PDF-to-text operations, and the
manuals were usually too large to upload as is to web
interfaces.

○ We studied DaeDaLus and Spicy since they had shorter manuals.

○ The manuals did not produce any improvements in the performance of the

LLMs at producing specifications, with identical results to zero-shot

prompting

24

● Fed 5 sample specifications each for Spicy and DaeDaLus, and
found an improvement in Spicy specifications for JPEG and
Modbus implementations.

Hypotheses Revisited

25

H1: All LLMs must be able to produce some

sample specifications in each DDL syntax.

Result: False; no valid specifications in

DaeDaLus and DFDL syntax.

H2: LLMs tend to miss portions of the

specifications, and rarely accept all valid

sample inputs.

Result: True

H3: LLM-generated specifications would

accept several malformed inputs.

Result: True

H4: Being provided with specifications and

manuals, LLMs should be able to provide

compilable DDL specifications.

Result: Partially True; manuals did not help, but

examples did.

Hypotheses Revisited

26

H1: All LLMs must be able to produce some

sample specifications in each DDL syntax.

Result: False; no valid specifications in

DaeDaLus and DFDL syntax.

H2: LLMs tend to miss portions of the

specifications, and rarely accept all valid

sample inputs.

Result: True

H3: LLM-generated specifications would

accept several malformed inputs.

Result: True

H4: Being provided with specifications and

manuals, LLMs should be able to provide

compilable DDL specifications.

Result: Partially True; manuals did not help, but

examples did.

Hypotheses Revisited

27

H1: All LLMs must be able to produce some

sample specifications in each DDL syntax.

Result: False; no valid specifications in

DaeDaLus and DFDL syntax.

H2: LLMs tend to miss portions of the

specifications, and rarely accept all valid

sample inputs.

Result: True

H3: LLM-generated specifications would

accept several malformed inputs.

Result: True

H4: Being provided with specifications and

manuals, LLMs should be able to provide

compilable DDL specifications.

Result: Partially True; manuals did not help, but

examples did.

Hypotheses Revisited

28

H1: All LLMs must be able to produce some

sample specifications in each DDL syntax.

Result: False; no valid specifications in

DaeDaLus and DFDL syntax.

H2: LLMs tend to miss portions of the

specifications, and rarely accept all valid

sample inputs.

Result: True

H3: LLM-generated specifications would

accept several malformed inputs.

Result: True

H4: Being provided with specifications and

manuals, LLMs should be able to provide

compilable DDL specifications.

Result: Partially True; manuals did not help, but

examples did.

Conclusions

● Hammer, Nom, and Kaitai Struct seemed to have the most compiling
specifications, with Nom and Kaitai having more correct specifications. They
might be appropriate candidates for LLM-assisted generation in the future.

29

● A large portion of the specifications we generated did not compile, and among
the ones that did a very small subset turned out to be correct.

● LLMs are not very successful at generating DDL code when there are not many
sample specifications available on the Internet (DaeDaLus and Spicy).

Future Directions

● Patching specifications based on failing inputs

● Using newer reasoning engines to conduct a similar study

● Performing translations from one DDL syntax to another

● Systematically exploring what file format features and corresponding DDL
features prevent accurate LLM-generated specifications

30

Thank You

prashant.anantharaman@narfindustries.com

31

https://github.com/narfindustries/llm-tests-langsec
https://prashant.at/files/llm-langsec25.pdf

Some other discussion items

● Postel’s Robustness Principle and permissiveness: how do you evaluate
ground truth with Wireshark and Pillow knowing they are permissive?
Differential fuzzing of any generated parser to existing real-world parsers
would be the best way forward.

32

● Reproducibility Challenges: It is challenging….
We released our source code and prompt templates and set the model
versions.

Does Temperature Affect Code Generation?

● Claude 3.5 Sonnet and GPT-4-Turbo

comparatively produce far more

compilable specifications

● However, temperature variations do not

show consistent effects on compilation

success

33

Hypotheses

RQ1: Can off-the-shelf LLMs produce DDL code that is syntactically valid?
H1: All LLMs must be able to produce some sample specifications in each DDL syntax

RQ2: Does the generated DDL code cover 100% of the format specification?
H2: LLMs tend to miss portions of the specifications, and rarely accept all valid sample inputs

RQ3: Does the generated DDL code reject malformed inputs?
H3: LLM-generated specifications would accept several malformed inputs.

RQ4: Can LLMs learn the syntax of DDLs they do not know using example specifications and
manuals?
H4: Being provided with specifications and manuals, LLMs should be able to provide compilable

DDL specifications

34

Research Questions

RQ1: Can off-the-shelf LLMs produce DDL code that is syntactically valid?

RQ2: Does the generated DDL code cover 100% of the format specification?

RQ3: Does the generated DDL code reject malformed inputs?

RQ4: Can LLMs learn the syntax of DDLs they do not know using example
specifications and manuals?

35

The Core Problem

Parser Vulnerabilities

Paragon and Pegasus attacks:
● FORCEDENTRY: Vulnerabilities in the

JBIG2 image parsing library
● libwebp Vulnerabilities: Vulnerabilities in

image parsing libraries used in
Chromium-based browsers

● LogoFAIL: Vulnerabilities in image-parsing
libraries of AMI, Insyde, and Phoenix BIOS
meant to parse personalized BIOS logos

36

Parser Differentials

● PDF Attacks where two readers show
different content

● X.509 certificates: different parsers
disagree on who was granted the
certificate

● HTTP Request Smuggling: Bypassing some
security protections/guarantees on HTTP
proxies/middleboxes

Hypotheses Revisited

H1: All LLMs must be able to produce some sample specifications in each DDL syntax
Result: False; no valid specifications in DaeDaLus and DFDL syntax

H2: LLMs tend to miss portions of the specifications, and rarely accept all valid sample inputs
Result: True

H3: LLM-generated specifications would accept several malformed inputs.
Result: True

H4: Being provided with example specifications and manuals, LLMs should be able to provide compilable
DDL specifications

Result: Partially True; manuals did not help, but examples did.

37

