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Abstract—Many systems are controlled via commands built
upon user inputs. For systems that deal with structured com-
mands, such as SQL queries, XML documents, or network
messages, such commands are generally constructed in a “fill-in-
the-blank” fashion: the user input is concatenated with a fixed
part written by the developer (the template). However, the user
input can be crafted to modify the command’s semantics intended
by the developer and lead to the system’s malicious usages. Such
an attack, called an injection-based attack, is considered one of
the most severe threat to web applications. Solutions to prevent
such vulnerabilities exist but are generally ad hoc and rely on
the developer’s expertise and diligence. Our approach addresses
these vulnerabilities from the formal language theory’s point of
view. We formally define two new security properties. The first
one, “intent-equivalence”, guarantees that a developer’s template
cannot lead to malicious injections. The second one, “intent-
security”, guarantees that every possible template is intent-
equivalent, and therefore that the programming language itself is
secure. From these definitions, we show that new design patterns
can help create programming languages that are secure by design.

Index Terms—Programming Languages, Formal Languages,
Security

The authors contributed equally to this work.

I. INTRODUCTION

The multiplication of new programming languages, software
engineering frameworks, and tools has significantly shortened
the Internet and web-based applications’ development cycles.
The architectures of the applications generally share the same
design pattern for accessing external resources: they rely on
building one or several statements (generally called queries)
for interpreters that perform the required actions on application
resources. Such queries can be SQL queries for databases,
shell system commands, XPath queries on XML documents, or
a specific message format for a remote service on the Internet.
Due to the low-level interaction between the application and
the interpreter, such queries generally consist of a concatenated
sequence of characters that may involve user-supplied data.
More precisely, the developer generally writes a fill-in-the-
blanks-type query, and user-supplied data is placed inside each
“blank”.

However, user input is not always legitimate. A whole class
of attacks aims specifically at this widespread architecture:
injection-based attacks. These attacks consist of submitting
malicious inputs and building a malicious query whose se-

mantics is different from what the developer had in mind.
They can produce dramatic effects depending on the type of
service, and their persistent vulnerability is generally attributed
to a lack of developer awareness or bad practices [1]. In
2020, CWE (Common Weakness Enumeration) [2] listed SQL
injection, OS-command injection, and code injection among
their 25 most dangerous software vulnerabilities. OWASP
(Open Web Application Security Project) ranked injection as
the most dangerous web application threat in 2017 [3] and as
the third most dangerous one in 2021 [4]. Indeed, injections
are ubiquitous: they affect nearly all programming languages
families: query languages and network protocols like SQL,
even with object-relational mapping (ORM), NoSQL, HTTP,
SMTP and LDAP1, interpreted languages like JavaScript,
HTML, CSS, python, Windows command line and Bash2,
compiled languages such as Java and Go3, structured formats
such as URL, JSON and XML4. This list is not exhaustive
and gets longer and longer as new languages, protocols, and
formats are developed and used.

Although many tools exist to identify and prevent injection-
based attacks, they generally only treat the symptoms of these
attacks, with ad-hoc methods, and not the root cause of the
vulnerability. Only a few articles were interested in the vulner-
abilities embedded in the programming languages design itself,
and this is the line of work we want to expand. By answering
why all programming languages seem vulnerable to injection-
based attacks, we seek to answer how such vulnerabilities
could be detected and prevented at two steps: the design of a
new language and its use by a developer. To this extent, this
work relies on a new formalization of injection vulnerabilities.
As suggested by [5], we consider that the developer has an
intent in mind while writing the query. Any user input that
this intent cannot explain is considered malicious. This new
definition, particularly adapted to a theoretical analysis, led to
several results on malicious injections depending on the query
language grammar class. More precisely, our contributions are:

• two new security properties: intent-equivalence and

1HTTP: CVE-2019-13143, SQL: CVE-2019-1010259 and CVE-2019-
14900; SMTP: CVE-2017-9801; LDAP: CVE-2019-4297

2JavaScript: CVE-2019-1020008; HTML: CVE-2019-1010113; CSS: CVE-
2020-16254; python: CVE-2019-10633; Bash: CVE-2014-6271

3Java: CVE-2018-16621; Go: CVE-2020-28366
4URL: CVE-2022-0391, JSON: CVE-2018-14010



intent-security;
• decidability of such properties for various grammar

classes;
• grammar design patterns that can lead to languages free

of injection-based vulnerabilities.
The paper is structured as follows. Section II presents

some fundamental background concepts of language theory.
Our fundamental assumptions and their technical implications
are discussed in Section III. The intent-equivalence property
is defined and studied in Section IV. The intent-security
property is defined and analyzed in Section V. Section VI
presents strategy to design languages that are secure by design.
Section VII discusses related work and positions our main
contributions. Finally, Section VIII summarizes our major
results and discusses future directions.

II. BACKGROUND

A formal grammar G = (N,T,R, S) consists of four
elements. T is a finite set of terminal symbols, called the
alphabet. N is a finite set of nonterminal symbols, disjoint
from T . We will denote ∆ = N ∪ T the set of all symbols.
The elements of ∆∗ are sentential forms, and the elements of
T ∗ are words, where ∗ represents the Kleene star operation.
The empty sentential form is denoted ϵ. The length of a
sentential form α, denoted |α|, is the number of symbols it
is composed of (so α ∈ ∆|α|). R is a finite set of rules (also
called productions). A production is an expression of the form
α → β, where α ∈ ∆+ − N+ (i.e., α contains at least one
terminal), β ∈ ∆∗. Finally, S is a symbol of N called the
axiom. In the following, we generally use uppercase Latin
letters at the start of the alphabet (A, B, . . . ) for nonterminals,
lowercase Latin letters at the start of the alphabet (a, b,
. . . ) for terminals, lowercase Latin letters at the end of the
alphabet (u, v, . . . ) for words and Greek letters (α, β, . . . )
for sentential forms. We will denote tuples in boldface. For
example: t = (t1, . . . , tm).

Let r = α → β be a rule of G. A sentential form ω1αω2

directly derives ω1βω2 by applying r, written ω1αω2 ⇒G

ω1βω2, for any ω1, ω2 ∈ ∆∗. If ω1, ω2, . . ., ωn are sentential
forms such that ω1 ⇒G ω2 ⇒G . . . ⇒G ωn, then ω1 derives
ωn, written ω1 ⇒∗

G ωn (⇒∗
G is the reflexive transitive closure

of ⇒G). Since ⇒∗
G is reflexive, every sentential form α ∈

∆∗ derives itself: α ⇒∗
G α. For simplicity, we will omit the

subscript G when it is understood. A word w is derivable
from the grammar if there exists a sequence of rules that leads
to this word when applied from the axiom S, i.e. S ⇒∗ w.
A nonterminal A is reachable from the axiom if there exists
α, β ∈ ∆∗ such that S ⇒∗ αAβ. The language generated by
the grammar is the set of derivable words from its axiom and
is noted L(G).

For a given sentential form w = x1x2 . . . xm, where m ∈ N
and xi ∈ ∆ for i = 1, 2 . . .m, the reversal of w is the word
wr = xmxm−1 . . . x1. We extend this notation to language:
Lr = {wr | w ∈ L}.

In the following, we will use the notion of quotient of
languages, that can be defined as follows. If A and B are

languages (i.e., subsets of T ∗), the left quotient of A by
B, written B⧹A, is the set {v ∈ T ∗ | ∃u ∈ T ∗ :
uv ∈ A ∧ u ∈ B}. Similarly, the right quotient A⧸B is
{u ∈ T ∗ | ∃v ∈ T ∗ : uv ∈ A ∧ v ∈ B}. We will denote p⧹A
the left quotient of A by the language containing solely the
word p ∈ T ∗ and A⧸s the right quotient of A by the language
containing solely the word s ∈ T ∗.

The hierarchy of Noam Chomsky classifies grammars into
several types [6], according to the restrictions on the form of
the rules. This classification is briefly described in Table I. A
language L is said to be of type t whenever there exists a type-
t grammar G such that L = L(G). Many decision problems
about formal languages depend on the language type [7]–[9].
In this work, we limit the scope of our research to injections in
context-free languages, where the left-hand part of each rule
consists of one non-terminal.

Type 0 Any grammar no restriction on the rules form

Type 1 Context-sensitive
grammar

rules of the form: αAβ → αγβ
with A ∈ N,α, β ∈ N∗, γ ∈ ∆+

Type 2 Context-free
grammar

rules of the form: A → β
with A ∈ N, β ∈ ∆∗

Type 3 Regular grammar rules of the form: A → aB, A → a
or A → ϵ with A,B ∈ N , a ∈ T

TABLE I: Chomsky hierarchy

For context-free languages, one can represent a derivation
in the form of a rooted tree, called parse tree. Each node is
labelled by an element of ∆; the root is labelled by the axiom
S, each internal node is labelled by a nonterminal and each
leaf is labelled by a terminal. A context-free grammar is said
ambiguous if there exists at least one word with multiple parse
trees, and unambiguous if such a word does not exist.

In addition to these classic grammar types, we will be
interested in some other classes: deterministic context-free
grammars, LR(k), LR(0) and LL(1) grammars. Deterministic
context-free grammars [10] are derived from deterministic
pushdown automata. They form a proper subset of context-free
grammars and are widely used because they can be parsed in
linear time.

Operation REG LL(1) LR(0) DCFL CFL
Concatenation ✓ ✗ ✓ ✗ ✓

Union ✓ ✗ ✗ ✗ ✓
Complement ✓ ✗ ✗ ✓ ✗

Intersection with reg. set ✓ ✗ ✗ ✓ ✓
Inverse homomorphism ✓ ✗ ✗ ✓ ✓

TABLE II: Closure (symbol ✓) and non-closures (symbol ✗)
of various languages classes with respect to classic operations.

Problem REG LL(1) LR(0) DCFL CFL
Membership (w ∈ L?) D D D D D

Equivalence (L1 = L2?) D D D D U
Inclusion (L1 ⊆ L2?) D U U U U
Emptiness (L = ∅?) D D D D D

TABLE III: Decidability (D) and undecidability (U) of various
problems on languages classes.



Table II summarizes the closures and non-closures proper-
ties of operations for classic grammar classes [8], [11]. These
operations are classical operations on sets (union, complement,
intersection) and strings (concatenation, also called product).
Homomorphisms are letter-to-string functions (i.e., T → T ∗).
They are extended to string-to-string functions in a morphic
way: h(ϵ) = ϵ, h(uv) = h(u)h(v) for all strings u, v ∈ T ∗.
Table III summarizes the decidability of various problems for
the same grammar classes [12], [13]: membership, equiva-
lence, inclusion and emptiness.

III. MALICIOUS INJECTIONS MODELIZATION

Injections vulnerabilities typically stem from the integration
of untrusted user input to build queries. In this paper, we use
the term query to denote the complete string that includes the
part written by the developer and the part that stems from the
user input. We use the term template to denote the set of strings
the developer writes to construct their query by concatenation.
The term blank denotes a place in a template in which the
user input can be inserted by concatenation. A template can
contain either one blank (for instance, a search form) or
multiple blanks (for instance, an authentication form). The
data injected by users in the template is called an injection. We
find the term "user input" inappropriate because the injection
may not come directly from a human user (as it can be the
case in second-order injection attacks). Besides, the user input
may be modified (typically escaped or truncated) before being
included in the template. Remark that, with this definition,
an injection is not necessarily malicious: legitimate injections
exist as well and are expected.

Let us illustrate new concepts we introduce with the LDAP
language, because it has a simple grammar, is widely used
and can be targeted by injection-based attacks. A simplified
grammar GLDAP can be expressed with the following rules:

S → (!S) S → (s=s) S → (&L)
S → (|L) L → S L → LS

where S is the axiom, L is a non-terminal denoting a list, and
s is a token that can match any alphanumerical string. Seman-
tically, ! is the negation, & is the logical conjunction ("AND")
and | is the logical disjunction ("OR"). This grammar is LR(0)
and is not regular.

For the sake of illustration, assume the developer main-
tains directory information services that can be searched with
LDAP, a widely used protocol, especially for user authen-
tication. They design the following template to check if a
username and a password exist:

(&(uid= )(passwd= ))

This template has two blanks, denoted , where user inputs
can be injected. The developer expect the user to input one
string for each blank so, intuitively, any user input that is
not a string should be considered malicious. Sometimes, the
developer can expect a more complex user input, like a list of
comparisons, or a Boolean formula. We assume that legitimate
injections comply with the developer’s intent which can be

modelized as a symbol of the grammar, or a sequence of
symbols. In the previous template, the intent of the developer
can be modelized as the terminal s.

We justify this choice as follow. A malicious injection is an
injection that modifies the semantics of the query. We cannot
use this definition as formal language theory does not model
semantics. However, the semantics is handled by parsers that
heavily relies on a grammar. Even though there is an infinity
of grammars that describe any language, there is generally
one grammar of reference for every programming language.
Such grammar has not been chosen at random: it is optimized
to be understandable by the human (for example, the name
of nonterminals generally conveys some semantics about its
role in the grammar) and to facilitate the production of the
semantics by the parser (generally used by a compiler or
an interpreter). For these reasons, we make the reasonable
assumption that the syntactic analysis by the grammar of
reference of a language strongly correlates the sentence’s
semantics.

Classic injection attacks clearly illustrate that they must
indeed modify the order and the types of the tokens of the
queries drastically to modify the way the sentence is parsed
and thus its semantics. When a developer writes a template,
they have some intent about the user input: a name, a number,
or a more complex structure such as a Boolean expression
for a condition. Our fundamental assumption is that these
intents correspond to symbols or sequences of symbols of
the grammar of reference of that language. We consider
that legitimate injections respect the intent while malicious
injections don’t. These terms are formally defined in the next
sections.

IV. INTENT-EQUIVALENCE

A. Definitions

For the sake of simplicity, we will first restrict our definition
to templates with a single blank. The definitions will be
extended to templates with multiple blanks in the appendix.
In the single-blank setting, a template p s can be described
as a prefix p and a suffix s. In the following, every definition
are given with respect to a grammar G = (N,T,R, S).

Let us begin by defining the set of injections that can be
used in some template. This definition is straightforward: it
is the set of factors that lead to a valid (syntactically correct)
word when inserted into the template.

Definition IV.1 (Injections of L for a template (p, s)). Let L
be a formal language and p, s ∈ T ∗. We define the language of
injections of L associated to a template (p, s) as the language
defined by:

F (L, (p, s)) = {w ∈ T ∗ | pws ∈ L} = p⧹L⧸s

Among these injections, there may be legitimate and mali-
cious ones. As proposed in the previous section, we formalize
the legitimate injections by the set of words that can be derived
from a sentential form we call the intent.



If the intent of the developer is some ι ∈ ∆+, then they
expect a user input that can be derived from ι. Therefore, we
call the expected injections for intent ι the injections that can
be derived from ι.

Definition IV.2 (Expected injections of G for intent ι). Let
ι ∈ ∆+. The language of expected injections of G for intent
ι, noted E(G, ι), is defined as:

E(G, ι) = {w ∈ T ∗ | ι ⇒∗ w}

Notice that the set of expected injections of a regular (resp.
context-free) grammar G is also a regular (resp. context-free)
language. So this set is generally as easy to manipulate as
G. Given an intent, it is easy to verify whether or not some
injection is compatible with it, i.e., if the injection is a member
of the expected injections associated to that intent.

If ι is a sequence of terminals, the only sentential form w for
which ι ⇒∗ w is ι itself and therefore E(G, ι) = {ι}. Such
intent may seem useless because then the developer would
expect only one possible injection, removing all information
gained from the user input. However, in general, the terminals
of real-world grammars are tokens whose recognition is han-
dled by the lexer, and tokens like "string" or "number" entail
multiple possibilities for user inputs. So, most intent are in
fact terminals.

Example IV.3. Consider the following LDAP template t:

(&(uid= )(passwd=1234))

Let us assume the intent of the developer is the terminal s, i.e.,
the user is expected to enter a string. Since s is a terminal, the
only expected injection is s, i.e., E(GLDAP ,s) = {s}. How-
ever, the injection foo)(loc=bar lead to the syntactically
valid query:

(&(uid=foo)(loc=bar)(passwd=1234))

So foo)(loc=bar ∈ F (L(GLDAP ), t) and
foo)(loc=bar /∈ E(GLDAP ,s). Therefore, this template
can accept injections that do not comply with the intent of
the developer: this template is therefore vulnerable.

A template is secure if the set of all injections is explained
by at least one intent ι that could appear in that sentence. In
that case, we say that the template is intent-equivalent to ι.

Definition IV.4 (Intent-equivalence to an intent). Let G be a
formal grammar and p, s ∈ T ∗ and ι ∈ ∆+. The template
(p, s) is intent-equivalent to ι if:

S ⇒∗ pιs and F (L(G), (p, s)) = E(G, ι)

Remark that, to prove that (p, s) is intent-equivalent to ι,
it suffices to show that S ⇒∗ pιs and F (L(G), (p, s)) ⊆
E(G, ι), as S ⇒∗ pιs implies E(G, ι) ⊆ F (L(G), (p, s)).

Example IV.5. Let us consider the grammar G =
({a, b, c, d}, {S}, R, S) where R = {S → aSb;S → cd},
and the following template:

aa cdbbb

Here, the only injection that lead to a syntactically correct
sentence is "a". Therefore, this template is intent-equivalent
to "a".

In various cases, a template can include multiple blanks.
A classic example is the template associated to a login page
that has generally a blank for the username and another for
the password. We generalize the definitions of Section IV for
templates with m blanks and intentions that are tuples. As a
reminder, we denote tuples in boldface.

A template is a sequence of terminals with some blanks:
t1 1t2 2t3 . . . tm mtm+1. We impose the presence of at
least one terminal between two blanks; without this constraint,
one blank could be interpreted as several adjacent blanks.

Definition IV.6 (Template with m blanks). Let m ≥ 1. A
template with m blanks is a sequence t = (t1, . . . , tm+1) ∈
T ∗ × (T+)m−1 × T ∗.

The template (&(uid= )(passwd= )) presented
earlier is a typical example of a template with two blanks
used for authentication.

Given a template with m blanks and m injections, we define
the fill-in-the-blanks operator that creates the concatenation of
the template with the injections.

Definition IV.7 (Fill-in-the-blanks operator). Let m ≥ 1. We
define the fill-in-the-blanks operator ⊙ as:

⊙ : (T ∗ × (T+)m−1 × T ∗)× (T ∗)m → T ∗

(t1, . . . , tm+1), (w1, . . . , wm) 7→ t1w1t2w2 . . . wmtm+1

We will use the infix notation (e.g., t⊙w, read "t filled with
w") for this operator.

We extend the other definitions to multiple blanks in Ap-
pendix A.

Example IV.8. Reusing the grammar defined in Example IV.5,
the template aa cd bb is not intent-equivalent to (a, b):
indeed, the attacker can inject aa in the first blank and bb in
the second blank. In fact, there is not intent that can derive
exactly the set of possible injections, even if both aa cdbbb
and aaacd bb are independently intent-equivalent to a and
b respectively.

B. Properties

It can be of interest to assess the decidability of the intent-
equivalence of a template t to some fixed intent ι for various
classes of grammar. This problem mainly concerns the static
analysis of the source code, where the tool has access to the
template. We skip the study of finite languages whose intent-
security is trivially decidable. The first class we study is those
of the regular grammars.

Theorem IV.9. Let G = (N,T,R, S) be a regular grammar,
m ≥ 1, t a template with m blanks and ι ∈ (∆+)m. It is
decidable whether t is intent-equivalent to ι.

Proof: To decide the intent-equivalence, we have to prove
that F (L, t) = E(G, ι). These two sets contain m-tuples and,



therefore, are not languages. To apply results from language
theory, we transform these tuples into words with the injective
function ft that relies on new symbols #i,#i, for m ≥ i ≥ 1
and defined as follow:

ft(w) = t⊙ (#1w1#1,#2w2#2, . . . ,#mwm#m)

If ft(F (L, t)) = {ft(w) | w ∈ F (L, t)} is equal to
ft(E(G, ι)) = {ft(w) | w ∈ E(G, ι)} then F (L, t) =
E(G, ι) due to ft being injective.

Let us first construct the set ft(F (L, t)) with the languages
L1 and L2. L1 is the language L whose each word have been
doped with the new symbols #i,#i for m ≥ i ≥ 1. Consider
the following homomorphism h:

h(a) =

{
ϵ if a = #i or a = #i for some m ≥ i ≥ 1

a if a ∈ T

This homomorphism removes the symbol #i and #i, so its
inverse adds these symbols and L1 = h−1(L). Since regular
languages are closed under inverse homomorphisms, L1 is
regular. Remark that ft(w) ∈ L1 if and only if t⊙w ∈ L.

L2 is the set of templates completed with any fac-
tors where each factor is surrounded by #i and #i. Re-
mark that, with a slight abuse of notation, L2 = t ⊙
(#1T

∗#1,#2T
∗#2, . . . ,#mT ∗#m). As a finite concatena-

tion of regular languages, this language is regular. Further-
more, it does not depend on the language L. We will now
prove that ft(F (L, t)) = L1 ∩ L2.
⊆: Let w ∈ F (L, t). Remark that L2 = {ft(w) | w ∈

(T ∗)m} so ft(w) ∈ L2. Besides, t⊙w ∈ L, so ft(w) ∈ L1.
So ft(F (L, t)) ⊆ L1 ∩ L2.
⊇: Let w ∈ L1 ∩ L2. Since L2 = {ft(w) | w ∈ (T ∗)m},

there exists w′ ∈ (T ∗)m such that w = ft(w
′). Since

ft(w
′) ∈ L1, we know that t⊙w′ ∈ L, so w′ ∈ F (L, t). So

L1 ∩ L2 ⊆ ft(F (L, t)).
Finally, ft(F (L, t)) = L1∩L2. Since L1 and L2 are regular,

the set ft(F (L, t)) is regular. Besides, ft(E(G, ι)) = {t ⊙
(#1w1#1,#2w2#2, . . . ,#mwm#m) | ∀i, wi ∈ E(G, ιi)}.
Since every language E(G, ιi) is regular, ft(E(G, ι)) is
regular.

So the template t is intent-equivalent to ι if and only if
ft(F (L, t)) = ft(E(G, ι)). Since both languages are regular,
this is decidable (by Theorem 3.12 from [8]).

This result should not be surprising as most problems
are decidable for regular grammars. To expand this result
to deterministic language, we would need to compare the
languages of expected injections E(G, ι) with the language of
injections. However, this may not be easy. While p⧹L(G)⧸s
is necessarily deterministic, we don’t know whether E(G, ι) is
deterministic or not in the general case. Nonetheless, we prove
in the following lemma that for an intent of length 1 (ι ∈ ∆),
if G is an LR(k) grammar then E(G, ι) is deterministic.

Lemma IV.10. Let k ∈ N and G = (N,T,R, S) be an
LR(k) grammar. Then, for any A ∈ ∆ reachable from S,
G′ = (N,T,R,A) is a LR(k) grammar.

The proof of this lemma, along with others, is available in
Appendix B.

This lemma allows us to adapt the proof of Theorem IV.9
and to conclude the decidability of the intent-equivalence for
LR(k) grammar when the intent length is 1.

Theorem IV.11. Let G be an LR(k) grammar, m ≥ 1, t a
template with m blanks and ι ∈ (∆)m (so |ιi| = 1 for all i).
It is decidable whether t is intent-equivalent to ι.

Proof: The proof is similar to the proof of Theorem IV.9.
Deterministic languages are closed by inverse homomorphism,
so L1 is deterministic. They are also closed by intersection
with a regular language, so L1∩L2 is deterministic (L2 doesn’t
depend on L and is always regular). Because each E(G, ιi)
is LR(k) (due to Lemma IV.10) and because ft(F (L, t)) is
a marked concatenation of LR(k) languages, ft(F (L, t)) is
deterministic [14]. So F (L, t) and E(G, ι) are deterministic.
Finally, the equivalence of deterministic languages is decid-
able [15]. We can conclude that it is decidable whether t is
intent-equivalent to ι.

This theorem is limited to |ι| = 1 because, otherwise,
E(G, ιi) may not be LR(k). However, LR(0) grammars are
closed by concatenation, so we obtain the following result:

Theorem IV.12. Let G be an LR(0) grammar, m ≥ 1, t a
template with m blanks and ι ∈ (∆+)m (no constraint on the
size of ιi). It is decidable whether t is intent-equivalent to ι.

Proof: The proof is similar to the proof of IV.11. Denote
ιi = ιi,1ιi,2 . . . ιi,k. We can decompose E(G, ιi) in the follow-
ing way: E(G, ιi) = E(G, ιi,1) · E(G, ιi,2) · . . . · E(G, ιi,k).
Due to previous lemma, each set E(G, ιi,j) (for 1 ≤ j ≤ k)
is an LR(0) language. Since the languages LR(0) are closed
by product [14], E(G, ιi) is an LR(0) language. The rest of
the proof is similar.

Example IV.13. GLDAP is LR(0) so the intent-equivalence
of any of its templates could be automatically assessed. For
example:

(!(uid=foo)

is intent-equivalent to ) and

(&(uid= )(passwd=1234))

is not intent-equivalent to s (as discussed in Example IV.3).

The previous theorems are limited to deterministic gram-
mars. It would be interesting to see whether the intent-
equivalence could be decidable for more general context-free
grammars. However, the following theorem shows that this is
undecidable.

Theorem IV.14. Let G be a context-free grammar, (p, s) a
template and ι ∈ ∆. It is undecidable whether (p, s) is intent-
equivalent to ι.

The origin of this undecidability is that the set of expected
injections can be very complex. If we impose the intents to
be composed of terminals only, the set of expected injections



will be finite. In that case, the intent-decidability is decidable
for context-free languages.

Theorem IV.15. Let G be a context-free grammar, m ≥ 1, t a
template with m blanks and ι ∈ (T+)m, so ι can only contain
terminals. It is decidable whether t is intent-equivalent to ι.

Proof: Once again, the proof is similar to the proof of
Theorem IV.9. Context-free languages are closed by inverse
homomorphism, so L1 is context-free. They are also closed
by intersection with a regular language, so L1∩L2 is context-
free. Because each E(G, ιi) = {ιi} (due to ιi ∈ T+)
and because ft(F (L, t)) is a concatenation of context-free
languages, ft(F (L, t)) is context-free. So F (L, t) is context-
free and E(G, ι) is finite, therefore F (L, t) − E(G, ι) is
context-free and its emptiness is decidable. We can conclude
that it is decidable whether t is intent-equivalent to ι.

This last result is interesting because the intents of the
developer are generally composed of one token, i.e., one
terminal.

Theorems IV.9 and IV.11 indicate that security solutions
though template analysis (e.g., by static analysis of the source
code) can be useful as long as the developer’s intent is known
and the grammar is regular or LR(0). When the developer’s
intent length is 1, such analysis can also be performed on
LR(k) grammars, which encompass many real-world gram-
mars. When it is composed of terminals only, it is even
possible on any context-free grammar. In the general case,
however, even when the template and the developer’s intent
are known, it is undecidable whether unexpected injections
can happen in context-free grammars due to Theorem IV.14.
The question of the decidability of the intent-equivalence for
any intent is still open for deterministic context-free grammars.

The definitions and the properties described this section can,
depending on the grammar, allow us to show whether some
template is safe or not. However, they cannot be used to prove
that a whole grammar is safe when the language is infinite.
This is the subject of the next section.

V. INTENT-SECURITY

A. Definitions

The goal of this subsection is to propose a property that
guarantees that a grammar is safe. Consider the following case:
a developer wants to write an LDAP query where the user
provides the value for some field. Can they be guaranteed that
any template written for that intent is intent-equivalent to their
intent?

Let us first define the set of injections for a given intent for
all templates. This set contains all words that could replace an
expected injection among all templates.

Definition V.1. Let ι ∈ ∆+ be a sentential form. The language
of injections of G for intent ι, written I(G, ι), is the language
defined by:

I(G, ι) = {w ∈ T ∗ | ∃p, s ∈ T ∗ : pws ∈ L(G), S ⇒∗ pιs}

In all these injections, some may comply with the in-
tent ι and be expected (and legitimate), and some may be
unexpected.

Definition V.2 (Unexpected injections of G for intent ι). Let
ι ∈ ∆+. The language of unexpected injections of G for intent
ι, noted δI(G, ι), is defined as:

δI(G, ι) = {w ∈ T ∗ |∃p, s ∈ T ∗ : pws ∈ L(G),

S ⇒∗ pιs, ι ̸⇒∗ w}

Remark V.3. By relying on expected injections, we can
propose an alternative and equivalent definition of unexpected
injections: δI(G, ι) = I(G, ι)− E(G, ι)

We can use this set of unexpected injections of G for intent
ι to define properly the property of intent-security we describe
earlier: an intent-secure grammar has no unexpected injections.

Definition V.4 (Intent-secure grammar for an intent). Let ι ∈
∆+. A formal grammar G is said to be intent-secure for ι if
there are no unexpected injections for that intent, i.e.:

δI(G, ι) = ∅

Since the intent-security holds for every prefix and suffix,
it intuitively means that it is stronger than intent-equivalence.
This is confirmed by the next proposition:

Proposition V.5. Let ι ∈ ∆+. G is intent-secure for ι if and
only if, for all templates (p, s) such that S ⇒∗ pιs, (p, s) is
intent-equivalent to ι.

Proof: G is intent-secure for ι

⇐⇒ δI(G, ι) = ∅
⇐⇒ I(G, ι) ⊆ E(G, ι)

⇐⇒ ι ⇒∗ w for all w, p, s ∈ T ∗

such that pws ∈ L(G) and S ⇒∗ pιs

⇐⇒ (p, s) is intent-equivalent to ι for all (p, s) ∈ T ∗

such that S ⇒∗ pιs

This result highlights the potential of grammar analysis.
If one can prove that a grammar is intent-secure for some
intent, then it means that a developer with that intent will
always write templates that allow only legitimate injections.
The extensions of these definitions to multiple blanks are
available in Appendix A.

Example V.6. A fair question is: do such grammars exist?
This will be the subject of Section VI. Small finite grammar
can trivially be intent-secure, but let us show that the grammar
in Example IV.5, that describes an infinite language, is in fact
intent-secure for intent length 1.

A simple proof by induction shows that L(G) =
{ancdbn | n ≥ 0}. Each word in L(G) contains exactly one
occurrence of the symbols c and d and contains as many a
symbols as b symbols. All a symbols (resp. b symbols) of a



word in L(G) are before the symbol c (resp. after the symbol
d).

The grammar G contains one non-terminal S and four
terminals {a, b, c, d}. So there are only five different intents
of length 1:

• Case 1: ι = a. Due to the form of the words in L(G), a
query with a injection in a has the form amιarcdbn, with
m,n, r ≥ 0. Since the word amaarcdbn belongs to L(G),
m+1+ r = n, so r = n− 1−m and amιan−1−mcdbn.
The query already contains the symbols c and d. There-
fore, a valid injection cannot contain these symbols. The
symbol ι is to the left of the c symbol. Therefore, a valid
injection cannot contain a b symbol and a valid injection
contains only a symbols. In order to balance the number
of a symbols and b symbols, the injection must contain
only one a symbol. Finally, the only valid injection is a
and δI(G, a) = {a} − {a} = ∅.

• Case 2: ι = c. A valid injection must include exactly one
c and no d because there must be exactly one c and one
d in the query. There cannot be any b in this injection
because all b are after d. If this injection contains one or
more a, there will be strictly more a than b in the query.
So, finally, the only valid injection is c.

• Case 3: ι = d. Similar to case 2.
• Case 4: ι = b. Similar to case 1.
• Case 5: ι = S. A simple induction shows that all

the sentential forms with this injection point have the
following form: ancdbn, with n ≥ 0. The set of injections
is therefore I(G,S) =

⋃
n≥0 a

n⧹L⧸bn = {amcdbm |
m ≥ 0} = E(G,S). So δI(G,S) = ∅.

In the previous subsection, we defined the notion of intent-
security for grammars only, for the reasons detailed in Section
III. However, the intuition tells us that some languages are not
intent-secure, no matter what grammar is used. So, we define
inherently intent-insecure languages.

Definition V.7 (Inherently intent-insecure language for intent
length n). Let L be a formal language. L is inherently intent-
insecure for intent length n if all context-free grammars G
such that L(G) = L are intent-insecure for intent length n.

B. Properties

Let us first exhibit some properties about the monotonic
behavior of unexpected injections. Indeed, usual advice for
developers is to use the least powerful language suitable for
one task [16] with the intuition that simpler languages are
less prone to injection vulnerabilities. In this subsection, we
explore such kinds of properties and whether they hold in our
framework. Without any surprises, we can prove a monotonic
property of unexpected injections for unambiguous grammars
and, therefore, for deterministic grammars.

Theorem V.8. Let two unambiguous grammars G1 =
(N,T,R1, S) and G2 = (N,T,R2, S) such that R1 ⊆ R2.
Then δI(G1, ι) ⊆ δI(G2, ι) for all ι ∈ ∆+.

This result motivates the advice mentioned above as it
applies to the widely used unambiguous grammars. However,
such monotonic property is not true in the general case (cf.
Example B.1 in Appendix B).

We can also derive a monotonic property on languages (and
not grammars), provided we restrict the analysis to terminal
intents. Trivially, if a language is inherently intent-insecure,
then any superset of this language is also inherently intent-
insecure, as implied by the following proposition.

Proposition V.9. Let G1 and G2 be two grammars such that
L(G1) ⊆ L(G2). Let n ≥ 1, ι ∈ Tn. Then δI(G1, ι) ⊆
δI(G2, ι).

The rest of the subsection is dedicated to analyzing the
decidability of the intent-security for classical classes of
grammars: regular, deterministic, and context-free. The intent-
security of a grammar could greatly help the risk analysis of
using that grammar and provide guarantees about its usage in
critical systems.

The intent-security is trivially decidable for finite languages,
because all considered sets are finite. However, such a result
cannot be obtained for infinite regular languages. In fact, these
languages are inherently insecure due to the pumping lemma.

Theorem V.10. Let n ≥ 1. Infinite regular languages are
inherently insecure for intent length n.

Proof: Let L be a infinite regular language. By the
pumping lemma for regular languages, there exists an integer
l > 0 depending only on L such that every word w ∈ L
of length at least l can be written as w = xyz, satisfying
|y| ≥ 1, |xy| ≤ l, and ∀k ≥ 0, xykz ∈ L(G). As |y| ≥ 1,
|yn| ≥ n. Let w,w′ be two words such that |w| = n and
ww′ = yn. Remark that there exist w′′ such that |w′′| ≥ 1 and
ww′′w′ = yn+1. Let p = x, s = w′z. Then pws = pynz ∈ L,
pww′′s = pyn+1z ∈ L and w ̸= ww′′ so L is inherently
intent-insecure for intent length n no matter what grammar is
used to describe it.

This theorem may appear of little interest, as regular lan-
guages are rarely used in programming languages. However,
due to the Proposition V.9, we can conclude that any language
that includes an infinite regular language is also inherently
intent-insecure.

Corollary V.11. Let L be a formal language and Lr be an
infinite grammar language such that Lr ⊆ L. Then L is
inherently intent-insecure.

Proof: Direct application of Proposition V.9 and Theo-
rem V.10.

In particular, if any nonterminal derives an infinite regular
language in a formal grammar, then its language is inher-
ently intent-insecure. Since such constructions are ubiquitous
in programming languages, it explains their vulnerability to
injection-based attacks.

Example V.12. The classic SQL injection ’ OR ’1’=’1 can
be viewed as an injection in the infinite regular sublanguage



SELECT * FROM table WHERE (<Condition> OR)*
<Condition> where the symbols <Condition> OR are
pumped by the injection. This is also the case for piggy-backed
SQL injections that rely on the (<Query> ;)* <Query>
regular sublanguage and for UNION-based SQL injections
that rely on the (<Select Query> UNION)* <Select
Query> regular sublanguage.

In fact, this is also the case for OS command injection
(<Command> ;)* <Command>, for SMTP "To" and "From"
injection (<Email> %0A cc:)* <Email>, for LDAP in-
jection (cf. Example IV.3), and many more.

While regular infinite languages are inherently insecure,
their set of unexpected injections are regular and can be easily
computed. However, in most cases, the set of unexpected
injections lies in a language class that is more complex than
that of the query language. As an example, the following
proposition shows a simple LL(1) grammar with context-
sensitive unexpected injections.

Proposition V.13. Consider two context-free grammars G1 =
({S1, N1}, T,R1, S1), G2 = ({S2, N2}, T,R2, S2) with T =
{k, d, a, â, v, v̂} and the following rules:

R R1 R2

S → a N2 S1 → k v N1 v S2 → a N2

S → v̂ S2 v N1 → v N1 v S2 → v̂ S2 v
S → v S2 v̂ N1 → v̂ N1 v̂ S2 → v S2 v̂
S → â S2 a N1 → a N1 a S2 → â S2 a
S → S1 N1 → â N1 â N2 → a S2 â

N1 → d N2 → v d

Let G = ({S, S1, N1, S2, N2}, T,R ∪ R1 ∪ R2, S). The
grammar G is a LL(1) grammar and its unexpected injections
in k are δI(G, k) = {v̂a2i | i ≥ 0}, which is context-sensitive
and not context-free.

So the languages of unexpected injection can be much
more complex than the initial grammar: in this case, an
LL(1) grammar can yield a context-sensitive set of unexpected
injections. Since the emptiness is undecidable for context-
sensitive languages, this example suggests that the intent-
security of a grammar (verified by the emptiness of its un-
expected injection set) could be undecidable even for simple
grammars. In fact, for more complex grammars, the intent-
security is undecidable.

Theorem V.14. Let n ≥ 1. A language L is recursively
enumerable if and only if there exist an LR(0) grammar G
and ι ∈ ∆n such that L = δI(G, ι).

The undecidability of the intent-security is a corollary of the
previous theorem and the fact that emptiness is undecidable
for recursively enumerable languages.

Corollary V.15. Let G be an LR(0) grammar, n ≥ 1. It is
undecidable whether G is intent-secure for intent length n.

Proof: Since the emptiness of recursively enumerable lan-
guages is undecidable, it is undecidable whether δI(G, ι) = ∅

for any ι ∈ ∆+. Therefore, it is undecidable whether G is
intent-secure for intent length n.

If the intent-security is undecidable for the class of LR(0)
grammars, it is also undecidable for the classes that include
LR(0) grammars, such as LR(k) grammars, deterministic
grammars and context-free grammars.

These results show there is no automatic way of proving that
some LR(0) grammar is intent-secure. Since LR(0) are among
the most simple deterministic grammars, it means that the vast
majority of programming languages would be difficult to be
proved intent-secure. For such languages, the static analysis
of individual templates (discussed in section IV) is a more
promising approach.

The last result was shown for one blank. In the following,
we show that all infinite context-free languages are inherently
intent-insecure for at least two blanks.

Theorem V.16. Infinite context-free languages are inherently
intent-insecure for at least two blanks.

Proof: This result is an application of the pumping lemma
for context-free languages. Let G be a context-free grammar
that describes an infinite language. If G describes a regular
language, then according to Theorem V.10 it is not intent-
secure with a single blank, so it cannot be intent-secure with
two blanks.

S

pb A

wA

cs

(a) Simplified version of the
parse tree of pbwAcs

S

pb A

y A

wA

z

cs

(b) Simplified version of the parse
tree of pbywAzcs

Fig. 1: Illustration of the proof of Theorem V.16. Injections
are in red.

Let us assume that G describes a non-regular language.
As remarked by Chomsky in [6], G must be self-embedding,
which means there is a symbol A ∈ N and y, z ∈ T+ (so
y ̸= ϵ and z ̸= ϵ) such that A ⇒∗ yAz. Let denote b the
last terminal of y and c the first terminal of z. Let ι1 = b
and ι2 = c. Let w1, w2 ∈ T ∗ such that S ⇒∗ w1Aw2. Let
us define p, s ∈ T ∗ such that pb = w1y and cs = zw2. Then
S ⇒∗ w1Aw2 ⇒∗ w1yAzw2 = pbAcs.

Let wA ∈ T+ such that A ⇒∗ wA. Let us consider the
following template p 1wA 2s where the first (resp. second)
blank is associated with the intent b (resp. c). This template,
filled with the intents, leads to pbwAcs, a word in L(G). Let
us consider the injection (by, zc). Because S ⇒∗ pbAcs and
pbAcs ⇒∗ pbyAzcs ⇒∗ pbywAzcs, the latter is in L(G). So
(by, zc) ∈ I(G, (b, c)). This is illustrated by Figure 1.

Since y ̸= ϵ and z ̸= ϵ, by ̸= b and zc ̸= c so (by, zc) /∈
E((b, c)) = {(b, c)}. Finally, we can conclude that (by, zc) ∈
δI(G, (b, c)), and therefore that G is inherently intent-insecure



with two blanks. Obviously, the same example can be carried
out if there are more than two blanks.

Example V.17. The injection vulnerability stemming from
the context-free pumping lemma is less prevalent because it
requires two injection points. However, consider again this
LDAP template:

(&(uid= )(passwd= ))

We can safely assume that the developer expects a string s
into each injection point, leading to the parse tree presented
in Figure 2.

S

( & L

L

S

( uid = foo )

S

( passwd = bar )

)

Fig. 2: Parse tree for expected injections.

If the injection in the first blank is admin)(!(&(1=0 and
the injection in the second blank is text)), then the final
query is:

(&(uid=admin)(!(&(1=0)(passwd=text))))

where the injections are in red to improve readability. This
classical LDAP injection bypasses the password check by
pumping the S nonterminal, as shown in Figure 3. Sadly, there
is no way to avoid this kind of vulnerabilities without leaving
the context-free language class.

S

( & L

L

S

( uid = admin )

S

( ! S

( & L

L

S

( 1 = 0 )

S

( passwd = text )

)

)

)

Fig. 3: Parse tree for the injection attack.

While our study pinpoints universal injection vulnerabilities
in infinite regular languages and context-free languages due to

the pumping lemmas, there exist of course injections that do
not rely on the pumping lemmas. For example, the SQL tem-
plate SELECT * FROM products WHERE id= could
expect a number but receive a string. However, a wide variety
of injections attacks do in fact exploit these pumping lemmas.

We can conclude that the only context-free grammars that
are intent-secure with at least two blanks are finite languages.
This fact is important to consider when designing a new
network protocol. For example: dealing with size-bounded
messages (or adding context-sensitive fields such as payload
length) is a necessary measure for injection-vulnerability-free
protocols.

VI. INTENT-SECURITY BY DESIGN

Theorem V.15 shows that there is no general algorithm
that can prove that a language is intent-secure, which can
give the feeling that the notion of intent-secure language
has no practical interest and that injection vulnerabilities are
unavoidable. In this section, we show that practical intent-
secure languages are possible and we propose design patterns
that can lead to intent-secure languages by design.

Theorem VI.1. Let G = (T,N,R, S) be a context-free formal
grammar. Let us denote GA the grammar (T,N,R,A) where
A ∈ N . If

• G is LL(1),
• G is RR(1),
• G is epsilon-free,
• L(GA) is bifix-free (prefix-free and suffix-free),∀A ∈ N ,
• For all A ∈ N , if there exists B ∈ ∆ and α ∈ ∆∗ such

that A → B and A → α, then α = B,
then G is intent-secure for any intent ι ∈ ∆.

The intuition behind this proposition is that the intent can
be inferred from the left part of the query (because it is LL(1)
and the right part of the query (because it is RR(1)). The last
two condition are in fact necessary: the bifix-free condition is
necessary to avoid attacks that expand on the left or the right
of the expected user input and the last condition is necessary
to identify the correct intent.

From this result, we can derive a simple design pattern: by
adding opening (resp. closing) delimiters o (resp. c) for each
rule r, we can ensure the previous conditions are met.

Proposition VI.2. Let G = (T,N,R, S) be a context-free
formal grammar. If for all rules r, there exist A ∈ N , α ∈ ∆∗,
or ∈ T and cr ∈ T such that r : A → orαcr, and or and cr
only appear once in the grammar, then G is intent-secure for
any intent ι ∈ ∆.

Proof: We show that G verifies the condition of the
previous theorem. The parsing is guided by the first symbol
of each rule: since it is unique, only one rule can explain its
occurrence so G is LL(1). The same reasoning can show that
G is RR(1). Each rule produces at least two terminals (or
and cr), so there are no epsilon-production. The presence of
these symbols makes the grammar bifix-free, and it is still
bifix-free if the axiom is changed. Each rule contains at least



two symbols (or and cr). Since or and cr are unique, the last
condition is also verified. So G is intent-secure for any intent
ι ∈ ∆.

Example VI.3. This proposition can be applied to the gram-
mar from Example V.6 to (re)prove that it is intent-secure for
any intent ι ∈ ∆: indeed, its two rules S → aSb and S → cd
each starts and ends with a unique symbol.

Let us illustrate this design pattern on a simple example: a
list. Lists in programming languages are typically written as
e1, e2, e3, . . . , en. We discussed lists in Section V as the typ-
ically regular expression pattern that can be trivially injected.
Such a list can be easily expressed with the following rules:

L → e, L L → e

where e is an element of the list.
We can modify these rules as suggested in Prop. VI.2, by

adding unique symbols at the start and the end of each rule:

L → [e, L] L → <e>

where we assume that [,],< and > do not appear elsewhere
in the language. The added delimiters (rendered in red for
clarity) transform the original list grammar that was regular
to a non-regular, context-free language that cannot be injected
with only one blank: Prop. VI.2 proves that this modified list
grammar is intent-secure for any intent ι ∈ ∆.

We encourage the reader to try to attack the following
templates:

< >
[1, [2, [ , <4>]]]

The attacker cannot modify the number of elements due
to the new delimiters [,],< and >. These templates are still
vulnerable if there are two injection points, as are all context-
free languages.

Example VI.4. Our theoretical work does not differentiate the
parser from the lexer. In practice, however, the attacker could
modify the template written by the developer by starting a
comment. Assume for example that the previous language L
allows single-line comments to start with --. Then, the at-
tacker could for example inject 3, [4, <5>]]]]-- inside
the second template, leading to:

[1, [2, [3, [4, <5>]]]]--, <4>]]]

which, after removal of the comment by the lexer, leads to:

[1, [2, [3, [4, <5>]]]]

which is a successful injection attack. This is not the case for
comments with a mandatory end delimiter (e.g., comments with
/* and */) for single-blank injections. Remark that LDAP
search filters do not allow comments.

We propose another design pattern that requires fewer new
delimiters but assumes the intent of the developer is not a
delimiter. This assumption is reasonable for many languages

since delimiters are mostly useful for easier parsing while
users typically input data symbols such as strings, values, etc.

Proposition VI.5. Let G = (T,N,R, S) be a context-free
formal grammar. If for all rules r, there exist A ∈ N , α ∈ ∆∗,
or ∈ T and c ∈ T such that r : A → orαc, or only appear
once in the grammar and c only appear as the last element
of right-hand parts of rules, then G is intent-secure for any
intent ι ∈ ∆− ({or | r ∈ R} ∪ {c}).

As an example, let us protect the LDAP grammar by
assuming the intent of the developer will only be s. In
that case, templates such as (uid=foo (intent: )) or
( (uid=foo)(passwd=bar)) (intent: & or |) are for-
bidden. Applying Th. VI.5, we added new delimiters (rendered
in red for clarity) to some rules:

S → (!S) S → {s=s} S → (&L)
S → (|L) L → <S> L → [LS]

Each rule starts with a unique delimiter: (!, {, (&, (|,
<, or [, so the theorem indeed applies. Therefore, the LDAP
query:

(&(uid=foo)(passwd= ))

can be rewritten into (the modified symbols are in red):

(&[<{uid=foo}>{passwd= }])

This template is intent-equivalent to s, meaning that only
string can be input by the user. In fact, any template where the
user should enter a string s will be secure against injection-
based attacks, so the grammar itself is secure.

Such design patterns could be used to create new, secure
programming languages, by effectively proving smaller part of
the language and using operations that are closed for intent-
secure grammars to merge them.

Proposition VI.6. Let G1 = (T,N1, R1, S1) and G2 =
(T,N2, R2, S2) be two context-free formal grammars.

• If G1 and G2 are intent-secure for any intent ι ∈ ∆, then
the concatenated grammar G3 = (T,N1∪N2, R1∪R2∪
{S → S1S2}, S) is intent-secure for any intent ι ∈ ∆.

• If G1 is a subgrammar of G2, i.e., if S1 is reachable from
S2, and if G2 is intent-secure, then G1 is intent-secure.

• Let L be any language. For any n ≥ 1, if G1 is intent-
secure for all ι ∈ Tn, then so is L(G1) ∩ L.

• If G1 is intent-secure for any intent ι ∈ ∆, then its
reversal Gr

1 is also intent-secure for any intent ι ∈ ∆.

Proof sketch: For the concatenation: because G1 and
G2 are intent-secure, they are also bifix-free, and so their
concatenation is unambiguous. So, for any template, we can
reduce the problem of intent-security to the intent-security
of either G1 or G2. For the subgrammar: trivial from the
definition of intent-security. The third result is simply the
contraposition of V.9.

However, intent-secure grammars are not closed for union.
For example, L1 = {aa} and L2 = {ab} have intent-secure
grammars but L1 ∪ L2 does not: b ∈ δI(L1 ∪ L2, a).



Finally, we would like to point out a hopeful result: there
probably exist context-sensitive languages that are not inher-
ently intent-insecure for several blanks. Consider any context-
free language L and the language L′

k defined as:

L′
k = {w(##w)k | w ∈ L}

where # is a new symbol not present in L. L′
k is a variant

of the copy language known to be context-sensitive but not
context-free [8]. We claim that L′

k is intent-secure for up to k
blanks for intents composed of one terminal (i.e., ιi ∈ T for
1 ≤ i ≤ k). Let us give the intuition of this result for k = 2.
In this case, L′

2 = {w##w##w | w ∈ L}. On one hand, the
word w is repeated three times. On the other hand, the attacker
can modify at most two of these words because of the two
blanks. Modifying two of the three w leads to a grammatical
error because the three words w won’t be the same. The same
idea can be expanded to any number of blanks, as long as
there is at least one extra copy of w.

Remark that L′
k is built around the context-free language L:

such a construction could be used to protect an existing lan-
guage, even though this construction is very long. This result is
not a formalized proposition as our definitions are not adapted
to non-terminal intents for context-sensitive grammars.

This section shows the potential practical impact of our
theoretical framework, and we believe that tighter sufficient
conditions for intent-secure languages can be found, as well
as more user-friendly design patterns.

VII. RELATED WORK

To the best of our knowledge, formal studies of injections
have seldom been explored. The existing formal definitions
are not used to characterize injections or answer the research
questions raised in the introduction. Let us examine the scope
and limitations of the proposed definitions.

The authors of [17] consider that a valid input from the user
must correspond to structurally complete data (for example, a
table name or a Boolean expression). They use this definition
to add markers in SQL queries to delimit user inputs and test
the validity of their structure. Although natural, this definition
is too limited from our point of view. Indeed, for some
applications, the user may be asked to provide data that is
not structurally complete (for example, part of the name of a
table instead of the full name or simply a Boolean operator
instead of a Boolean expression).

In [5], authors focus on SQL and consider an injection
to be a user input that does not belong to a finite list of
symbols. Knowing the SQL query to protect and the list of
legitimate symbols, they can build a list of legitimate abstract
syntax trees. During the execution, the concatenation with
the user data must lead to one of these abstract syntax trees
considered legitimate. This definition is also debatable because
the legitimate user inputs can be infinite (for example, if they
correspond to a Boolean expression, given that the set of
Boolean expressions is infinite). Besides, in some cases, an
injection may change how the query is parsed while preserving
the syntax tree’s overall structure.

Since injection-based attacks are based on textual data,
many researchers applied results from the formal language
theory. This theory studies the syntax of languages and their
relations with automata (theoretical computing devices) and
formal grammars (succinct descriptions of a language). This
approach is notably pursued by the LangSec community that
uses formal language theory to propose new tools and iden-
tify anti-patterns developers should avoid. Our work seek to
expand the theoretical work on injection-based vulnerabilities
previously initiated by [5], [17], [18]. Such a study could lead
to new tools, e.g., to support query certification (guarantee
that no malicious injection is possible), create new languages
without these vulnerabilities, and automatically infer the lan-
guage of malicious injections associated with a query. More
generally, this theoretical analysis could lead to solutions that
do not require (or require much less) expertise and would not
be tied to a particular language or technology. This in-depth
analysis based on formal language theory is the contribution
of this paper.

In 2005, [19] used formal language results, and notably
undecidability theorems, to analyze input validation and pro-
pose multiple observations and advice to developers. In [16],
the authors propose to modelize input attack as a difference
between the message a source wants to transmit and the
message the destination receives. More precisely, they focus
on an encoding function (used by the source to encode the
message) and a decoding function (used by the destination to
decode the encoded message). In this framework, an injection
is defined as a message whose semantics is modified by
the successive application of the encoder and the decoder.
These contributions, alongside [1], [20], are complementary
to our work. Their work tackle injection-based vulnerabilities
from an end-to-end perspective, including the implementation
issues, i.e., the difference between the target formal grammar
and the parsing and unparsing software, with a particular focus
on parsing flaws. We consider that injection-based vulnerabil-
ities have also a source in the formal grammar itself, and this
is why we focus to its in-depth study.

The study of secure-by-design programming languages is
not new. For example, the popular Rust language is memory-
safe, protecting programs against memory-based vulnerabili-
ties such as buffer overflow or pointers’ use-after-free. The
language Wyvern [21] proposes to embed in a single language
SQL and HTML so the type system can verify if the user
input matches the expected type. Sadly, this line of work did
not transfer to the industry. Wyvern protection cannot extend
over serialization an deserialization, so it cannot prevent an
injection if the concatenation is performed by another system.
On the other hand, Wyvern do not require to modify the
grammar while we do. Therefore, we consider our work to
be complementary to Wyvern.

The last formalization we mention is not dedicated to
injection-based attacks but should encompass any computer
attacks. This formal framework for security uses "weird ma-
chines", a concept used by exploit practitioners and described
in [22]. In this framework, what the developer intends to



implement is modelized as an "intended finite state machine"
(IFSM). It may differ from the actual implementation, mod-
elized by another finite state machine that may have additional
states (called "weird states") with no equivalent states in the
IFSM. This framework encompasses a large number of vul-
nerabilities, both hardware and software. However, we argue
that this framework is not adapted to injection vulnerabilities.
Injection attacks typically happen when two systems interact:
an interpreter that processes queries and a client that sends
queries. Two disjoint teams generally develop these systems.
However, in injection attacks, both systems behave accordingly
to the intent of their developers. In the case of an SQL
injection, for example, the interpreter may receive a malicious
query. Since an interpreter’s purpose is to execute queries,
an SQL attack can happen even if the interpreter has no
weird state (i.e., is safe in the weird machine framework).
It is also the case for the client. In most cases, the only
difference between a legitimate and a malicious user input is
in the data manipulated (generally as string). A malicious user
input doesn’t need to change the flow of the client’s program
(i.e., the path in the intended finite state machine). Injection
attacks are challenging to study because they may happen at
the interface of two systems with no weird states.

VIII. CONCLUSION

Injections are among the most common threats to online
services. Even if countermeasures exist, there is no guarantee
that a developer will always have the knowledge or time to
implement them sufficiently, if they are aware of the problem
in the first place. Furthermore, to the best of our knowledge,
no research has been done on protections embedded in the
language itself that could complement protections targeting
implementation issues. In this paper, we formalized the notions
of intent-secure grammar and intent-equivalent query. If a
grammar is intent-secure, the developer is sure that only
expected injections (according to their intent) can lead to
grammatically correct sentences, as long as their intent consists
of a single symbol (terminal or not). This property is very
strong since the developers do not have to specify their intent:
they do not have to be an expert in the grammar of the
languages they use. The decidability results of these two
properties are summarized in Table IV and V.

m blanks, m ≥ 1

ι ∈ (∆)m ι ∈ (∆+)m ι ∈ (T+)m

REG D (Th. IV.9) D (Th. IV.9) D (Th. IV.15)

LR(0) D (Th. IV.11) D (Th. IV.12) D (Th. IV.15)

LR(k) D (Th. IV.11) ? D (Th. IV.15)

CFG U (Co. IV.14) U (Co. IV.14) D (Th. IV.15)

TABLE IV: Intent-equivalence property. D: decidable. U:
undecidable. ?: unknown

One blank Two or more blanks

Finite D D

Non-finite REG F (Th. V.10) F (Th. V.10)

CFG with infinite
regular sublanguage

F (Co. V.11) F (Th. V.16)

Non-finite LR(0) U (Co. V.15) F (Th. V.16)

TABLE V: Intent-security property. F: always false. D: decid-
able. U: undecidable.

Our framework also allows to nuance some popular beliefs
about injection-based vulnerabilities. Injection-based vulnera-
bilities are often considered to stem from bad programming
practices. This reasoning implicitly assumes that a skilled
developer could always write secure queries, or at least verify
that their queries are not vulnerable to injection-based attacks.
Such a position is notably supported in the testing community
[23]: "data validation is the first line of defense against a
hostile world". However, Theorems V.14 and Corollary V.15
show that malicious injections may be very hard to detect. So,
even if data validation is indeed a necessary line of defense, it
cannot not sufficient. Injection vulnerabilities are embedded in
the language itself and one cannot rely only on the developer’s
skills to avoid them. If one uses an intent-insecure grammar,
additional security mechanisms, such as filtering, encoding,
input sanitization, static analysis, or intrusion detection, are
essential.

Besides, it is generally believed that simpler languages are
less prone to being attacked, as explained in [24]: "a complex
computational system is an engine for executing malicious
computer programs delivered in the form of crafted input".
Simple languages are very useful as the intent-security and
intent-equivalence of finite languages is decidable. However,
we would like to add some nuance to that statement: we
also showed that a complex language is not necessarily less
safe than a simpler language. For example, all infinite regular
languages are intent-insecure (Theorem V.10), while context-
free languages may be intent-secure. Furthermore, context-free
languages are inherently intent-insecure with two blanks but
we expect some context-sensitive grammars to be intent-secure
with multiple blanks.

To avoid injection-based vulnerabilities, we proposed sev-
eral syntactical design patterns. While we consider them too
cumbersome for mainstream programming languages, they can
be applied successfully to Domain-Specific Languages (DSL)
in domains where security properties are paramount. Besides,
we are certain that more user-friendly design patterns can be
proposed by the community.

Based on our results and the previous discussion, we
propose a set of research directions that could both extend
this present work and propose new security tools. First, an
analysis of popular programming languages may identify some
intents for which the language is intent-secure. One can



distinguish data tokens (such as strings, identifiers, etc.) that
can typically contain user data from control tokens (keywords
such as function, SELECT, and symbols such as {,[,(,
etc.) that are typically written by the developer only and not
filled by the user. Pragmatically, a query language does not
have to be intent-secure for every symbol but only for data
tokens. Second, we proved some decidable intent-equivalence
problems but we didn’t provide effective algorithms. Notably,
an algorithm to decide the intent-equivalence (or lack of)
of a query could be very useful for static analysis. Third,
since infinite context-free grammars are vulnerable to multiple
injections and their intent-security is undecidable, is it possible
to transform any context-free grammar into a similar intent-
secure context-sensitive grammar? We believe that indexed
grammars are particularly suitable for this task, since they are
context-sensitive and yet have efficient parsers [25]. Finally,
at the moment, our theory is adapted to context-free gram-
mars. However, most network protocol languages are regular
with contextual fields (such as checksum values and message
length). A focus on this class could bring new results for their
risk analysis. Indeed, all contextual fields are not as useful
against injections: adding a message length, for example, does
not make the grammar classes much more complicated [26].
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APPENDIX A
DEFINITIONS FOR MULTIPLE BLANKS

Let us expand the previous definitions (IV.1, IV.2, and IV.4)
to templates with m blanks.

Definition A.1 (Injections of L for a template t). Let L be a
formal language, m ≥ 1 and t ∈ T ∗ × (T+)m−1 × T ∗. We
define the language of injections of L associated to a template
t as the language defined by:

F (L, t) = {w ∈ (T ∗)m | t⊙w ∈ L}

Definition A.2 (Expected injections of G for intents ι). Let
G be a formal grammar, m ≥ 1 and ι = (ι1, ι2, . . . , ιm) ∈



(∆+)m. The language of expected injections of G for intents
ι, noted E(G, ι), is defined as:

E(G, ι) = E(G, ι1)× . . .× E(G, ιm)

Definition A.3 (Intent-equivalence of a template to an intent).
Let G be a formal grammar, m ≥ 1, t ∈ T ∗× (T+)m−1×T ∗

and ι ∈ (∆+)m. The template t is intent-equivalent to ι if:

S ⇒∗ t⊙ ι and F (L(G), t) = E(G, ι)

In the following, we succinctly extend the definitions of
intent-security from Section V to injections in multiple-blanks
templates.

Definition A.4 (Injections of G for intents ι). Let m ≥ 1 and
ι ∈ (∆+)m. We define the language of injections of G at ι as
the language defined by:

I(G, ι) = {w ∈ (T ∗)m |
∃t ∈ T ∗ × (T+)m−1 × T ∗ : t⊙w ∈ L(G)

and S ⇒∗ t⊙ ι}

Definition A.5 (Unexpected injections of G for intents ι). Let
m ≥ 1 and ι ∈ (∆+)m. We define the language of unexpected
injections of G at ι as the language defined by:

δI(G, ι) = I(G, ι)− E(G, ι)

Because intents may have different lengths for templates
with multiple blanks, we define the intent-security with a
constraint on the maximum length of each element of the
intent.

Definition A.6 (Intent-secure grammar with multiple blanks).
A formal grammar G is said to be intent secure with m blanks
for intent length at most n if, for all intent ι ∈ (

⋃n
k=1 ∆

k)m,
δI(G, ι) = ∅.

Furthermore, we extend the set of unexpected injections of
G over all intents with length n:

Definition A.7 (Unexpected injections of G for all intent of
length n). Let n ≥ 1. The set of unexpected injections of G
over all intents with length n, noted δIn(G), is defined as:

δIn(G) = {δI(G, ι) | ι ∈ ∆n}

Remark that δIn(G) is a set of languages and not a
language. For this reason, we use the calligraphic font I and
not I .

Definition A.8 (Intent-secure grammar for intent length n).
Let n ≥ 1. A formal grammar G is said to be intent-secure
for intent length n if, for every intent of length equal to n, all
injections are expected, i.e.:

δIn(G) = {∅}

APPENDIX B
PROOFS

Proof of IV.14: Let G1 = (N1, T,R1, S1) and G2 =
(N2, T,R2, S2) be two context-free grammars. Let S3, S′

2, #1,
#2 be new symbols and G3 = (T3 = T ∪ {#1,#2}, N3 =
N1 ∪ N2 ∪ {S′

2, S3}, R3 = R1 ∪ R2 ∪ R′, S3) where R′ is

defined as:
S3 → #1S1 S3 → #1S

′
2

S′
2 → S2 S′

2 → #2

Due to the rules in R′, F (L(G3), (#1, ϵ)) = L(G1) ∪
L(G2) ∪ {#2}. Let us search what symbol ι ∈ T3 ∪ N3 can
explain these injections. We can break this search into four
cases:

1) ι ̸= S3, ι ̸= S′
2, ι ̸= #2. Then E(G3, ι) does not contain

the symbol #2 so F (L3, (#1, ϵ)) ̸= E(G3, ι).
2) ι = #2. Then E(G3, ι) = {#2} and

F (L(G3), (#1, ϵ)) ̸= E(G3, ι) iff L(G1) = L(G2) = ∅.
3) ι = S3. But S3 ̸⇒∗

G3
#1S3, so (#1, ϵ) cannot be intent-

equivalent to S3.
4) ι = S′

2. S3 ⇒∗
G3

#1S
′
2 so it is a suitable candidate and

E(G,S′
2) = L(G2) ∪ {#2}.

Since (#1, ϵ) might only be intent-equivalent to S′
2 or #2,

we deduce that:

(#1, ϵ) is intent-equivalent to some ι

⇐⇒ F (L(G3), (#1, ϵ)) ̸= E(G3, ι)

∨ F (L(G3), (#1, ϵ)) ̸= E(G3, ι)

⇐⇒ (L(G1) ∪ L(G2) ∪ {#2}) = (L(G2) ∪ {#2})
∨ L(G1) = L(G2) = ∅

⇐⇒ L(G1)− L(G2) = ∅
⇐⇒ L(G1) ⊆ L(G2)

The grammar G3 is context-free, so if the intent-equivalence
for context-free grammars were decidable, then L(G1) ⊆
L(G2) would be decidable. Because the latter is undecidable
[27], we conclude that the intent-equivalence is undecidable
for context-free grammars.

Proof of Lemma IV.10: This proof relies on the definition
of LR(k) grammars proposed by [14] (Def 2.1) that relies on
the concept of rightmost derivation. A rightmost derivation is a
derivation in which at any derivation step the rightmost nonter-
minal is rewritten. Let us denote ⇒R the rightmost derivation
and ⇒∗

R its reflexive transitive closure. Let us also denote
(k)w the prefix of w with length min(|w|, k). The definition
of an LR(k) grammar is as follow: let G = (N,T,R, S)
be a grammar such that S ̸⇒+

R S and let w,w′, x ∈ T ∗,
γ, α, α′, β, β′ ∈ ∆∗, A,A′ ∈ N . G is said to be LR(k) if the
following implication is true: if S ⇒∗

R αAw ⇒R αβw = γw,
S ⇒∗

R α′A′x ⇒R α′β′x = γw′ and (k)w = (k)w′, then
A = A′, β = β′, |αβ| = |α′β′|.

The case where A is a terminal is trivial, as in this case
E(G,A) = {A} is finite. In the following, we assume that
A is a nonterminal. Since A is reachable from S, there exist



δ ∈ ∆∗ and w ∈ T ∗ such that S ⇒∗
R δAw. Let α, γ ∈ ∆∗,

w1, w2, w3 ∈ T ∗ such that:

A ⇒∗
R αBw2 ⇒R αβw2

A ⇒∗
R γCw1 ⇒R αβw3

(k)w2 = (k)w3

G′ is LR(k) if α = γ, B = C and w1 = w3. Since S ⇒∗
R

δAw:

S ⇒∗
R δAw ⇒∗

R δαBw2w ⇒R δαβw2w

S ⇒∗
R δAw ⇒∗

R δγCw1w ⇒R δαβw3w

Remark that if (k)w2 = (k)w3 then (k)(w2w) =
(k)(w3w). We

can use our hypothesis that G is LR(k) and conclude that δα
= δγ, B = C, w1w = w3w. Hence α = γ and w1 = w3, so
G′ is LR(k).

Proof of V.8: Let ι ∈ ∆+, w ∈ T ∗ such that w ∈
δI(G1, ι). Let us show that w ∈ δI(G2, ι). Given that w ∈
δI(G1, ι), we know that there exist p, s ∈ T ∗ such that pws ∈
L(G1), S ⇒∗

G1
pιs and ι ̸⇒∗

G1
w. Since R1 ⊆ R2, α ⇒∗

G1
β

implies that α ⇒∗
G2

β because all the rules used to derive β
from α in G1 can be used in G2. Therefore, pws ∈ L(G2),
S ⇒∗

G2
pιs.

Let us prove that ι ̸⇒∗
G2

w by contradiction, by assuming
that ι ⇒∗

G2
w and showing that G2 cannot be unambiguous.

Since ι ̸⇒∗
G1

w, it means that at least one rule in R2 but
not in R1 is used to derive w from ι in G2. So, there is a
derivation path from S to pws that uses at least one rule from
R2 −R1. On the other hand, since S ⇒∗

G1
pws, that there is

another derivation path from S to pws that only use rules from
R1. We created two different derivation paths from S to pws
in G2, which is in contradiction with it being unambiguous.
Therefore, we can conclude that the assumption ι ⇒∗

G2
w is

false.
Since we proved that pws ∈ L(G2), S ⇒∗

G2
pιs and

ι ̸⇒∗
G2

w, we conclude that w ∈ δI(G2, ι) and finally that
δI(G1, ι) ⊆ δI(G2, ι) for any ι ∈ ∆+.

Example B.1. Let two context-free grammars G1 =
(N,T,R1, S) and G2 = (N,T,R2, S). Let T = {a, b, c},
N = {S,M}, R1 = {S → aaM,S → aabb,M → cc}
and R2 = {S → aaM,S → aabb,M → cc,M → bb}.
Thus, R1 ⊂ R2 and L(G1) = L(G2) = {aabb, aacc}.
E(G2,M) = {bb, cc}.

The terminals go in pairs. For a blank corresponding to a
terminal intent, the only possible value is entirely determined
by one of the surrounding terminals. Thus, for any terminal
ι ∈ T , δI(G1, ι) = ∅ and δI(G2, ι) = ∅. For the axiom, we
necessarily have δI(G1, S) = δI(G2, S) = ∅. The only sen-
tential form containing M is aaM , for both grammars. Thus,
I(G1,M) = {bb, cc}. Since E(G1,M) = {cc}, we conclude
that δI(G1,M) = {bb}. On the other hand, E(G2,M) =
{bb, cc} so δI(G2,M) = ∅. Finally, δI(G1,M) = {bb},
δI(G2,M) = ∅, so δI(G1,M) ̸⊆ δI(G2,M).

Proof of V.9:

w ∈ δI(G1, ι) =⇒ pws ∈ L(G1), pιs ∈ L(G1), w ̸= ι

=⇒ pws ∈ L(G2), pιs ∈ L(G2), w ̸= ι

=⇒ w ∈ δI(G2, ι)

So δI(G1, ι) ⊆ δI(G2, ι).
Proof of Proposition V.13:

Let L1 = L(G1) and L2 = L(G2). The language L1 is
simply {kvαrdαv | α ∈ {a, â, v, v̂}∗}. Our goal is to compute
I(G, k):

I(G, k) = {z ∈ T ∗ | ∃p, s ∈ T ∗, pzs ∈ L, S ⇒∗ pks}
= {z ∈ T ∗ | ∃α ∈ {a, â, v, v̂}∗, zvαrdαv ∈ L}

This is justified by the fact that the words in L that contain
k all come from L1 (the words of L2 cannot contain k), so
necessarily p = ϵ and s = vαrdαv.

There is only one z such that zvαrdαv ∈ L1: k. This means
that the words z such that zvαrdαv ∈ L2 are exactly the
unexpected injections (since E(G, k) = {k}).

δI(G, k) = {z ∈ T ∗ | ∃α ∈ {a, â, v, v̂}∗, zvαrdαv ∈ L2}

In the following, the suffix palindrome (vαrdαv) will be
highlighted in blue. We want to prove that δI(G, k) =
{v̂a2n | n ≥ 0}. To achieve this goal, we will first
prove by induction on n that all words ω1ω2 from L2

such that ω1vα
rdαv ∈ L2 must have the form: ω1ω2 =

v̂a2
n

v(
∏

0≤i<n ϕi)
rd(

∏
0≤i<n ϕi)v for n ≥ 0, where ϕi =

va2
i

v̂â2
i

.
In the following, γi will be the sequence of words of G2

obtained by a backward (bottom-up) derivation with the rules
of G2. The previous definition of δI(G, k) shows that our
goal is to obtain a word with a suffix that is a palindrome
ending with v. We start from the smallest word of L(G2),
γ0 = avd. To get a palindrome around d, we need to add v
at the end of avd, and therefore use the rule S2 → v̂S2v to
obtain γ1 = v̂avdv. The sequence γ1 ends with a palindrome
vdv that ends with v, hence the injection is v̂a as expected.

For n = 1, we continue to make longer words from
γ1 = v̂avdv. The prefix before the palindrome vdv is v̂a
so, to extend the palindrome, we need to add av̂ at the
end of γ1. It means that the sole possibility to continue is
by using S2 → âS2a and then S2 → vS2v̂, leading to
γ2 = vâv̂avdvav̂. Because the added suffix av̂ does not end
with v, we continue, guided by the added prefix vâ. We obtain
γ3 = v̂aavâv̂avdvav̂âv that ends with a v. This leads to the
injection v̂aa as expected.

The same reasoning applies to the general case: let γl =
v̂a2

n

v(
∏

0≤i<n ϕi)
rd(

∏
0≤i<n ϕi)v. We are guided first by

the prefix v̂a2
n

, yielding: γl+1 = vâ2
n

γla
2n v̂. Since γl+1 does

not end with v, we are then guided by the starting sequence
vâ2

n

. We get: γl+2 = v̂(aa)2
n

γl+1â
2nv. Written completely,

it is:

γl+2 = v̂(aa)2
n

vâ2
n

v̂a2
n

v(
∏

0≤i<n

ϕi)
rd(

∏
0≤i<n

ϕi)va
2n v̂â2

n

v



As ϕn = va2
n

v̂â2
n

, γl+2 can finally be rewritten into:

γl+2 = v̂a2
n+1

v(
∏

0≤i<n+1

ϕi)
rd(

∏
0≤i<n+1

ϕi)v

This completes the induction. In the end, δI(G, k) =
{v̂a2i | i ≥ 0}: this language is well known to be context-
sensitive but not context-free [8].

Lemma B.2. For every recursively enumerable language L,
there exist a regular set R and two morphisms g and h, such
that

L = {g(w)⧸h(w) | w ∈ R}

Proof of Proposition B.2: This proof is based on the proof
of a similar theorem in [28]. We assume that L is defined by a
grammar G = (N,T,R, S) and that each rule in R is identified
by a unique symbol: R = {ri : αi → βi}i∈I , where I is a
finite index set. In addition to symbols from T and N , the au-
thors introduce |I|+3 new symbols, namely A, B, B, and the
symbols {ri}i∈I . The regular set R1

G = A(B∆∗R∆∗)∗B is
defined, as well as the homomorphisms described in Table VI.

A B B a ri
gG ABS B ϵ a βi

hG A B B a αi

TABLE VI: Morphisms gG and hG with a ∈ ∆ and ri : αi →
βi ∈ R

We focus on the intuition behind R1
G. Consider the follow-

ing derivation:

S = αa ⇒ra βa = u1αbv1

⇒rb u1βbv1 = u2αcv2

⇒rc u2βcv2

where ⇒r indicates that the rule r has been applied, and ui,
vi indicate in which context the rule has been applied. Let us
consider the word w = ABraBu1rbv1Bu2rcv2B that belongs
to R1

L and its image though gG and hG:

w = A Bra Bu1rbv1 Bu2rcv2 B

gG(w) = ABS Bβa Bu1βbv1 Bu2βcv2

hG(w) = A BαaBu1αbv1Bu2αcv2 B

Remark that hG(w) is a prefix of gG(w): in this example,
S = αa, βa = u1αbv1 and u1βbv1 = u2αcv2. In the end,
hG(w)⧹gG(w) is the last sentential form of the derivation,
in this case u2βcv2. The quotient ensure that the derivation
is valid. The theorem of [28] states that this quotient, when
intersected with T ∗, recreates exactly the words of the initial
language and only those, i.e.,

L = {hG(w)⧹gG(w) | w ∈ R1
G} ∩ T ∗

However, we can slightly modify this proof to omit this
intersection with T ∗. In fact, this intersection is used to
rule out the intermediate forms that are not words. But, by
modifying R1

G, we can ensure that the quotient result is always

a word. First, let us show that the previous theorem holds if we
replace R1

G = A(B∆∗R∆∗)∗B by R2
G = A(B∆∗R∆∗)+B:

L = {hG(w)⧹gG(w) | w ∈ R1
G} ∩ T ∗

= ({hG(w)⧹gG(w) | w ∈ A(B∆∗R∆∗)+B} ∩ T ∗)

∪ ({hG(AB)⧹gG(AB)} ∩ T ∗)

= ({hG(w)⧹gG(w) | w ∈ A(B∆∗R∆∗)+B} ∩ T ∗)

∪ ({S} ∩ T ∗)

= {hG(w)⧹gG(w) | w ∈ R2
G} ∩ T ∗

To ensure that all derivations will end with words, let us
define the final rules Rf as the rules of R whose right-
hand side is a word: Rf = {ri : αi → βi ∈ R |
βi ∈ T ∗}. Then, we can construct our new regular set
R3

G = A(B∆∗R∆∗)∗(BT ∗RfT
∗)B. Let us show that the

intersection with T ∗ is useless with this regular set by showing
that ∀w ∈ R3

G, hG(w)⧹gG(w) ∈ T ∗.
Let w ∈ R3

G, u, v ∈ T ∗ and r : α → β ∈ Rf (so β ∈ T ∗)
such that w ∈ A(B∆∗R∆∗)∗(Burv)B. As hG(w)⧹gG(w) =
uβv ∈ T ∗, we can conclude that {hG(w)⧹gG(w) | w ∈
R3

G} ⊆ T ∗.
Remark that R3

G ⊆ R2
G since T ⊂ ∆ and Rf ⊆ R.

Therefore:

{hG(w)⧹gG(w) | w ∈ R3
G} ⊆

{hG(w)⧹gG(w) | w ∈ R2
G} ∩ T ∗ = L

What is left to prove is that L ⊆ {hG(w)⧹gG(w) | w ∈
R3

G}. Let wG be a word of L. There exists w ∈ R2
G such that

wG = hG(w)⧹gG(w). Let us show that w ∈ R3
G. Let u, v ∈

∆∗, r : α → β ∈ R such that w = A(B∆∗R∆∗)∗(Burv)B.
We know that wG = hG(w)⧹gG(w) = uβv. As wG is in T ∗,
uβv is in T ∗, so u, v ∈ T ∗ and the right-side production of r
is in T ∗, i.e., r ∈ Rf . Finally, we showed that w ∈ R3

G and
thus wG ∈ {hG(w)⧹gG(w) | w ∈ R3

G}.
We can therefore conclude that L = {hG(w)⧹gG(w) | w ∈

R3
G}.
Let G′ = (N,T,R′, S) such that α → β ∈ R′ iff αr →

βr ∈ R, so L(G′) = Lr. We use G′ to end up with the
equation presented in the theorem:

L = (Lr)r

= {hG′(w)⧹gG′(w) | w ∈ R3
G′}r

= {m | hG′(w)m = gG′(w), w ∈ R3
G′}r

= {mr | hG′(w)m = gG′(w), w ∈ R3
G′}

= {mr | mrhG′(w)r = gG′(w)r, w ∈ R3
G′}

= {gG′(w)r⧸hG′(w)r | w ∈ R3
G′}

= {grG′(w)⧸hr
G′(w) | w ∈ (R3

G′)r}

where grG′ and hr
G′ are defined in Table VII.

Proof of V.14: This result is based the previous Lemma.
Let us show first the result for n = 1. Let R ⊆ T ∗, g : T → T
and h : T → T such that L = {g(w)⧸h(w) | w ∈ R} as
defined in the proof of Lemma B.2. Our goal is to create a



A B B a ri
gr
G′ SBA B ϵ a βr

i
hr
G′ A B B a αr

i

TABLE VII: Morphisms grG′ and hr
G′ with a ∈ ∆ and ri :

αi → βi ∈ R′

deterministic context-free grammar G and a symbol # such
that its unexpected injection language δI(G,#) is in the form
g(w)⧸h(w). To this end, we introduce three new languages,
L1, L2 and L3, defined over the symbols T ′ = T ∪{#, $} as:

L1 = {wr $ # h(w) | w ∈ R}
L2 = {wr $ g(w) | w ∈ R}
L3 = L1 ∪ L2

Let us show that L3 is a deterministic context-free language
by constructing a deterministic pushdown automaton (DPDA)
that recognizes it. Let Ar be a deterministic finite-state au-
tomaton that recognizes the regular language Rr and let us
modify it into A′

r such that each symbol that is read is pushed
to the stack. Let Ag (resp. Ah) be a DPDA that recognizes
g(w) (resp. h(w)) by empty stack guided by the word wr that
has already been pushed. More precisely, denote qg the initial
state of Ag and A′

g the rest of the states of Ag .
During the processing of the word, we can detect the end

of the regular expression when the symbol $ (absent in R)
occurs. The only tricky part is to choose which DPDA to use
after $, either Ah or continuing with A′

g . It can be easily done
thanks to the symbol # since no word of g(w) contains #
(cf. the form of R and Table VI). Hence, if # is encountered,
we continue with Ah and otherwise, we continue with Ag . A
DPDA for L3 can be built as shown in Figure 4: the words of
L3 are accepted by empty stack.

A′
rstart qg

A′
g

Ah
$ #

Fig. 4: A summarized DPDA for the language L3

Now that we know that L3 is a deterministic context-free
language, we examine its unexpected injection language at #.

δI(G,#) = {m ∈ T ′∗ | ∃p, s ∈ T ′∗, pms ∈ L3, (1)
p#s ∈ L(G)} − E(G,#)

= {m ∈ T ′∗ | ∃w ∈ R, wr$mh(w) ∈ L3} − {#} (2)
= {wr$⧹m⧸h(w) | w ∈ R,m ∈ L3} − {#} (3)
= ({wr$⧹m⧸h(w) | w ∈ R,m ∈ L2} ∪ {#}) (4)

− {#}
= {wr$⧹wr

2$g(w2)⧸h(w) | w,w2 ∈ R} (5)
= {g(w)⧸h(w) | w ∈ R} (6)
= L (7)

Passing from line (1) to line (2) is justified by the fact that
all the words in L3 that contain # come from L1 (since the
words of L2 cannot contain #), so necessarily p = wr$ and
s = h(w) for any w ∈ R. Passing from line (3) to line (4)
is justified by the fact that {wr$⧹m⧸h(w) | w ∈ R,m ∈
L1} = {#}. Passing from line (6) to line (7) is justified by
the Lemma B.2.

Finally, we constructed the deterministic context-free lan-
guage L3 with a deterministic grammar G such that
δI(G,#) = L. So L ∈ δI1(G).

In fact, we can expand this theorem: first, the grammar G
we construct is in fact LR(0) and second, we can modify the
proof to replace δI1(G) by any δIn(G) for a fixed value of
n ≥ 1.

This is a direct consequence of a result shown by [29]:
LR(0) languages are exactly the languages recognized by
a deterministic pushdown automaton that accepts by empty
stack. This is the case of the automaton constructed in the
previous proof, so L3 is an LR(0) language. In fact, we
can modify the construction of L1 in the previous proof by
replacing # with #n (n times the symbol #) and therefore
get that δI(G,#n) = L. So, for any n ≥ 1, a language L
is recursively enumerable if and only if there exists an LR(0)
grammar G and ι ∈ ∆n such that L = δI(G, ι).

Proof of VI.1:
Let pιs be a sentential form of G such that p, s ∈ T ∗ and

ι ∈ ∆. Let Pι be the parse tree of pιs and S,N1, N2, . . . Nn

the sequence of nodes in the branch that ends with ι (for the
sake of brevity, Ni will also denote the symbol that labels
the node Ni). For each node Ni (1 ≤ i ≤ n), denote δi the
symbols on the left of the symbol Ni and γi the symbols
of the right of the symbol Ni. By construction, Nn = ι. This
parse tree is represented in Figure 5a. Some of these sentential
forms may be empty. We can remark that δ1δ2 . . . δn ⇒∗ p in
this parse tree. Conversely, γ1γ2 . . . γn ⇒∗ s.

S

δ1 N1

δ2 N2

. . .

δn ι γn

γ2

γ1

(a) The parse tree Pι

S

δ′1 N ′
1

δ′2 N ′
2

. . .

δ′m−1w1 N ′
m

w2 w3γ
′
m

γ′
m

γ′
2

γ′
1

(b) The parse tree Pw

Fig. 5: Parse trees used in the proof of VI.1

Let w ∈ T ∗ such that pws is a word of L(G). Let Pw be
the parse tree of pws. Our goal is to show that these two parse
trees are in fact similar; more precisely, that at each stage k:
δk = δ′k, γk = γ′

k, Nk = N ′
k and finally that ι ⇒∗ w. This



proof shows that the first stage of these two trees are identical;
similar reasoning can be applied recursively.

Let rι be the rule used at the root of Pι and rw be the rule
used at the root of Pw. First show that rw = rι.

First case: δ1 ̸= ϵ. Since G is epsilon-free, there exists
w′ ∈ T+ such that δ1 ⇒∗ w′. Since the grammar is LL(1),
there is only one rule that can be used from the root node
and that begins with the first symbol of w′. This rule doesn’t
depend on ι nor w, so we can conclude that rι = rw. The
case γ1 ̸= ϵ is similar and relies on the fact that G is RR(1).

Second case: δ1 = ϵ and γ1 = ϵ. So it means that there
exists a rule in the form S → ι. Due to the hypothesis on G,
this is the only rule that can be applied to S, so rι = rw.

By definition of δ1, N1 and γ1, rι = S → δ1N1γ1. Let
δ′1, ϕ1, γ

′
1 ∈ ∆∗, p′, s′ ∈ T ∗ such that δ′1ϕ1γ

′
1 = δ1N1γ1,

ϕ1 ⇒∗ p′ws′ in Pw and the length of ϕ1 is minimal. Our goal
is to prove that δ1 = δ′1, γ1 = γ′

1 and ϕ1 = N1.
Let us first prove that δ1 is a prefix of δ′1 and that γ1 is a

suffix of γ′
1. Let A be the first symbol of δ1, wA ∈ T ∗ the

derivation of A in Pι and w′
A ∈ T ∗ the derivation of A in

Pι. Since A is the first symbol of δ1, wA is a prefix of p, i.e.
wAp

′′ = p. For the same reason, w′
A is a prefix of pws. We

can conclude that either wA is a strict prefix of w′
A, wA is a

strict prefix of w′
A or wA = w′

A. Since L(GA) is prefix-free,
the two first possibilities are excluded so wA = w′

A. Therefore
w′

Ap
′′ = p.

Let us prove that A is not the first symbol of ϕ1 by contra-
diction. Assume A is the first symbol of ϕ1, i.e. ϕ1 = Aϕ′

1.
Then ϕ1 ⇒∗ wAp

′′ws and ϕ′
1 ⇒∗ p′′ws. It is in contradiction

with the assumption that the length of ϕ1 is minimal: so A is
not the first symbol of ϕ1. Therefore, A is the first symbol of
δ′1.

This reasoning can be applied once more to show that the
second symbol of δ1 is also the second symbol of δ′1, etc.
Finally, it shows that δ1 is a prefix of δ′1. A similar reasoning
shows that γ1 is a suffix of γ′

1. So there exist δ′′1 and γ′′
1 such

that δ1δ
′′
1 = δ′1 and γ′′

1 γ1 = γ′
1. Since δ1Nγ1 = δ′1ϕ1γ

′
1 =

δ1δ
′′
1ϕ1γ

′′
1 γ1, we can conclude that N = δ′′1ϕ1γ

′′
1 .

Let us now prove N1 = ϕ1 by contradiction, by assuming
ϕ1 = ϵ. In that case, it follows that either δ′′1 = N1 or γ′′

1 =
N1. Assume that δ′′1 = N1 (the case γ′′

1 = N1 is similar).
Denote p′, s′ such that N1 ⇒∗ p′ιs′; remark that on the other
hand N1 = δ′′1 ⇒∗ p′′′ for some p′′′. Let u ∈ T ∗ such that
ι ⇒∗ u : |u| ≥ 1 because G is epsilon-free. So p′′′ is a strict
prefix of p′us′. It is in contradiction with the assumption that
L(GN1

) is prefix-free. So ϕ1 = N1.
Finally, we proved that δ1 = δ′1, γ1 = γ′

1, N1 = N ′
1. The

same reasoning can be applied to the other levels of the parse
trees as well. We obtain finally that ϕn = ι and ϕn ⇒∗ w, so
ι ⇒∗ w. We can conclude that G is intent-secure.

Proof of VI.5: Consider a grammar G that has been
modified by adding new opening and closing terminals, such
that each rule r = A → α is augmented with a unique opening
terminal or and a closing terminal c, resulting in A → orαc.
Note that the closing terminal is not necessarily unique: the
same closing terminal may be used in multiple rules.

Consider the derivations S ⇒∗ αιβ and S ⇒ αwβ with
ι ∈ ∆. We must prove that ι ⇒∗ w.

We proceed by applying two induction principles: one on
the derivation S ⇒∗ αιβ, and the other on S ⇒ αwβ. In
the following case analysis, we follow these derivations in a
synchronized fashion.

Base case for S ⇒∗ αιβ: if S = αιβ, then α = β = ϵ, so
S = ι and we can conclude directly.

Inductive step for S ⇒∗ αιβ: Suppose S → δ1 · · · δn with
δi ∈ V and δi ⇒∗ γi such that γ1 · · · γn = αιβ. By the
induction hypothesis, we assume the statement holds for each
pair (δi, γi).

Base case for S ⇒ αwβ: If S = αwβ, then |αwβ| = 1.
However, the grammar is strictly monotonic (|µ| ≥ 2 for each
A → µ ∈ G). Then n ≥ 2 and we have a contradiction.

Inductive step for S ⇒ αwβ: Suppose S → δ′1 · · · δ′m with
δ′i ∈ V and δ′i ⇒∗ γ′

i such that γ′
1 · · · γ′

n = αwβ.
Since the intent cannot be a marker, we have δ1 = δ′1.

Therefore, the first rule of the derivation S ⇒∗ αaβ is the
same as the first rule of the derivation S ⇒ αwβ. Hence,
n = m and δi = δ′i for all i.

One of the elements δi derives the symbol ι. Let us denote
this symbol by δk. Note that δk derives ι, but it may also
derive part of α and β. We have: α = α1α2, β = β1β2,
δ1 · · · δk−1 ⇒∗ α1, δk ⇒∗ α2ιβ1 and δk+1 · · · δn ⇒∗ β2.

By rewriting, we obtain S ⇒ α1α2wβ1β2. Given that
δ1 · · · δk−1 ⇒∗ α1 and δk+1 · · · δn ⇒∗ β2 it follows that
δk ⇒∗ α2wβ1.

Using the induction hypothesis on δk ⇒∗ α2ιβ1 and δk ⇒∗

α2wβ1, we can conclude directly.


