Vulnerability Flow Type Systems

Mohsen Lesani
University of California, Santa Cruz

Overview

Introduction

Type System
Operational Semantics
Type-safety Guarantees

Attacks Compose Vulnerabilities

* Modern attacks exploit a long chain of dormant abstractions
inside deployed functional systems.

* The composition of these primitives can give attackers
powerful programming models to program weird machines.

Example: DOJITA Browser Attack

while (true) {
xr = input();
if (x==1)

xpir(z) = f(z);

else if (z == 2)

out = IR py;

else if (x == 3)

p = jit(IRpr)

Concrete Program

DOJITA Browser Attack

while (true) { >
r = input();
if (x==1)
xptr(x) = f(x); > Injection
else if (z == 2) > |
out =]Rptr§ > | eak
else if (x == 3) > |
p = jit({Rptr) > Jit
;)"

Concrete Program Refinement Abstract Weird Machine

Vulnerability Flow Type System

* EXisting information flow type systems enforce the correct
flow of information for confidentiality and integrity but do not
track vulnerabilities and their composition for higher-level
malicious behavior.

* This project puts forward a new venue of investigation for
novel type theories that track unintended in addition to
intended computation and flow.

* This project will define and implement a type theory to derive
the abstract weird machines that programs expose.

Attacks Composed of Vulnerabilities

We will develop type systems that derive abstract weird
machines of programs as abstract control flow patterns
over vulnerability types.

The type system tracks information tlow to derive whether
vulnerabilities are present, and further tracks the control flow
between vulnerabilities.

The derived weird machines can be used to detect and
disrupt attacks.

Composition is the key to both a successful attack and a
successful mitigation: if the abstract program of an attack is
exploiting a given sequence of vulnerabilities, sandboxing one
vulnerability or reordering their flow can disrupt the attack.

DOJITA Browser Attack

while (true) { >
r = input();
if (x==1)
xptr(x) = f(x); > Injection
else if (x == 2) > |
out = IR pr; > Leak
else if (z == 3) > |
p = jit(IR) . Jit

})*
Concrete Program Refinement Abstract Weird Machine

Abstract weird machine: (Injection | Leak | Jit)*.

It allows the DOJITA attack Leak - Injection - Jit.

Both captured as the regular expression

Any emergent behavior from the captured vulnerabilities of the
concrete program is a behavior of the abstract program.

Attacks are Regular Expressions

It further tracks the abstract flow between vulnerability types
such as Leak, Injection, and Jit.

It derives weird machines as regular expression terms on
vulnerability types.

Regular expressions as a uniform description language for
exploitable weird machines.

Regular expressions can capture attack patterns that are
often simple, compositional and platform independent.

The language inclusion decision for regular expressions that
checks the possibility of an attack is remarkably efficient.

STt

@.QKH

n | x| egt ® ey | er;es
if eepelseey | whileeeé
r=ce | jite

w, f

w-w | wlw | w* | €
Leak | Injection | Jit
(¢, 1)

L | H

L | H

Syntax

Program

Types

Weird Machine
Vulnerability Types
Information Flow Type
Confidentiality Type
Integrity Type

10

Typing Judgments

vax ezw,f

11

Type System

VAL-TYPE
I, fxFn:e (L,H)

VAR-TYPE

[(z) = f

FanI_aj: €7f

12

Type System

OP-TYPE
o fxbeiw f T fikeia, ff

I fiikFe @ e:w-w, fUf

13

Type System

SEQ-TYPE
F?fX|_€:w7f F?fxl_elzw/7f/

D fiubee:w-w,f

14

Type System

IF-TYPE
F,fx|_€:w,f F7fX|—|f|_€/:w/,f/
vax |—|f |_ 6//: fw//7 4

[, fxFifee elsee”: w- (w'|w"), ffUf”

15

Type System

WHILE-TYPE
L, ke w, f L AUfRe:w, f

I, fx Ewhileee: w- (w - w)*, [

16

Type System

ASSN-TYPE
['(x) = (c, 1) [, (cy,ix) e w, (¢, i)
w,_{e if d Ue, C c

Leak else

e o/ « —
L€ it Ui, T2
Injection else

I (e ix) Foxi=e:w-w' - w”, (¢ i)

Type System

JIT-TYPE

[, (cx,ix) Fe:w, (c,1)

o {e if ¢ L4, C H
Jit else

', (e, i) Fjite: w-w', (¢, 1)

18

Operational Semantics

ASSN-SEM
(o, Rlx = n]) —
(o|z = n], R[n])

19

Instrumented Operational Semantics

ASSN-ISEM
['(x) = {c,1) = (Cy, Ix) v ={(n,(c,i))
e if ¢ e, Cc € if ¢/ i, C 1 B .
W= \Leak else Injection else =Wt
< 77fx7 [T g <F,’}/Qfl—>?}],fx,R[U]>

For every execution with the operational semantics, there is a corresponding
execution with the instrumented operational semantics, and vice versa.

Type-satety Guarantees

It the type system associates a weird machine to a program,
that weird machine covers the weird behavior that the
executions of the program can exhibit.

Theorem 2 (Type-safety). For all T, f,, e w, f, v, w', v/,
', and €, if

X,

I', fkFe:w,f,
I'F~, and

/
w

(I, fx.e) = (T, fr, €),
then
w' € w.

21

Type-satety Guarantees

It the type system type-checks a program e as the weird
machine w, and w does not intersect with an attack pattern

w’, then no execution of the program can produce an
instance of that attack.

Corollary 2.1. For all T, f,, e w, f, v, W', v/, f., and €,
if

I' fxFe:w,f,

I'F~,

wNw' =10, and

w'" C ',
then .

(D7, fer€) A% (DA, fL€).

22

Conclusion

* The type system can detect attacks that compose multiple
vulnerabilities such as the DOJITA browser attack.

* The checker that can detect the presence and absence of
composed attacks has the promise to be adopted by many
who strive for more secure software.

23

A few composed attacks

KOOBE: Towards Facilitating Exploit Generation of Kernel Out-
Of-Bounds Write Vulnerabilities. USENIX Security 20

JITGuard. Hardening Just-in-time Compilers with SGX. CCS
2017. 1. Frassetto, D. Gens, C. Liebchen, A.-R. Sadeghi

Towards Automated Generation of Exploitation Primitives for
Web Browsers. ACSAC '18

Speculative Probing: Hacking Blind in the Spectre Era. CCS
2020.

24

