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Overview

• Introduction

• Type System

• Operational Semantics

• Type-safety Guarantees
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Attacks Compose Vulnerabilities

• Modern attacks exploit a long chain of dormant abstractions 
inside deployed functional systems. 


• The composition of these primitives can give attackers 
powerful programming models to program weird machines.
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Example: DOJITA Browser Attack
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Jit

)⇤

Concrete Program Abstract Weird MachineRefinement

while (true) {
x = input();

if (x == 1)

...

⇤ptr(x) = f(x);

else if (x == 2)

...

out = IRptr ;

else if (x == 3)

...

p = jit(IRptr )

}
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Vulnerability Flow Type System

• Existing information flow type systems enforce the correct 
flow of information for confidentiality and integrity but ﻿do not 
track vulnerabilities and their composition for higher-level 
malicious behavior.


• This project puts forward a new venue of investigation for 
novel type theories that track unintended in addition to 
intended computation and flow.


• This project will define and implement a type theory to derive 
the abstract weird machines that programs expose.
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Attacks Composed of Vulnerabilities

• We will develop type systems that derive abstract weird 
machines of programs as abstract control flow patterns 
over vulnerability types. 


• The type system tracks information flow to derive whether 
vulnerabilities are present, and further tracks the control flow 
between vulnerabilities.


• The derived weird machines can be used to detect and 
disrupt attacks.


• Composition is the key to both a successful attack and a 
successful mitigation: if the abstract program of an attack is 
exploiting a given sequence of vulnerabilities, sandboxing one 
vulnerability or reordering their flow can disrupt the attack. 
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DOJITA Browser Attack
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out = IRptr ;

else if (x == 3)

...

p = jit(IRptr )

}

Abstract weird machine: ﻿(Injection | Leak | Jit)*. 
It allows the DOJITA attack Leak · Injection · Jit. 
Both captured as the regular expression 
Any emergent behavior from the captured vulnerabilities of the 
concrete program is a behavior of the abstract program. 



Attacks are Regular Expressions

• It further tracks the abstract flow between vulnerability types 
such as Leak, Injection, and Jit.


• It derives weird machines as regular expression terms on 
vulnerability types.


• Regular expressions as a uniform description language for 
exploitable weird machines.


• Regular expressions can capture attack patterns that are 
often simple, compositional and platform independent.


• The language inclusion decision for regular expressions that 
checks the possibility of an attack is remarkably efficient.
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Syntax
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information and vulnerability flow type system can simply derive abstract programs in those
languages. Further, given the regular expression, the possibility of new classes of unintended
behaviors can be examined. Once an attack pattern is found, sandboxing a vulnerability or disrupting
an essential control flow can neutralize the the attack pattern in the resulting weird machine.

e ::= n | x | e1 � e2 | e1; e2 Program
| if e e1 else e2 | while e e0

| x := e | jit e
t ::= w, f Types
w ::= w · w | w |w | w⇤ | ✏ Weird Machine

Leak | Injection | Jit Vulnerability Types
f ::= hc, ii Information Flow Type
c ::= L | H Confidentiality Type
i ::= L | H Integrity Type

Figure 2: Syntax

Syntax. We now showcase a core
information and vulnerability flow type
system for the while language. Fig. 2
shows the language syntax. An expres-
sion e is a value n, a variable x, an oper-
ation e1 � e2, a sequence e1; e2, a condi-
tional if e e1 else e2, a loop while e e

0, an
assignment x := e, or a JIT compilation
of an expression jit e. This expression
is used to model the just-in-time compi-
lation features of our browser use-case.

The type system associates a weird
machine w to a program expression e. We model weird machines as regular expression terms.
The alphabet of this language are vulnerability types such as Leak that represents leaking secrets,
Injection that represents injection of payloads into the memory space of the process, and Jit that
represents jit compilation (of injected code). A weird machine can be the concatenation w · w0 or
the alternation w |w0 of two machines w and w

0, or the Kleene closure w
⇤ of a machine w. These

operators can capture the common patterns of vulnerabilities. The void machine is represented as ✏.
In order to detect vulnerabilities, the type system associates to each expression e an information
flow type f in addition to the weird machine term w. An information flow type f is a tuple hc, ii
of the confidentiality type c and the integrity type i. The confidentiality and integrity types form
lattices v, for example with low L and high H elements.

The type system has the judgments of the form �, fx ` e : w, f where � is the type environment,
fx is the information flow type of the context, e is the program expression that is being typed, w is
the weird machine of e, and f is the information flow type of e. The judgment is read as follows:
under the environment �, and the context information flow type fx, the expression e exposes the
abstract weird machine w and has the information flow type f . The type environment � maps
variables to their flow types f . The information flow type of the context fx represents the implicit
flow types of the context under which e is typed, i.e., the type of the enclosing conditions.

Type System. The type system is presented in Fig. 3. The rule VAL-TYPE simply type-checks
a value n with the void weird machine ✏ and low confidentiality and high integrity. Similarly, the
rule VAR-TYPE type-checks a variable x according to the environment �.

The rule OP-TYPE type-checks an operation. The resulting weird machine is the concatenation
of the weird machines of the operands and the resulting flow type is join of their flow types. The
concatenation operator captures the control flow order of vulnerabilities. Similarly, the rule OP-
TYPE type-checks a sequence of two expressions. As for operations, the resulting weird machine
is the concatenation. However, the resulting flow type is the flow type of the latter operand as the
result of a sequence is the result of its second operand.

The rule IF-TYPE type-checks a conditional expression if e e
0
else e

00. The resulting weird
machine is w · (w0 | w00), the concatenation of the weird machine w of the condition e with the
alternation of the weird machines w

0 and w
00 of the two branches. The alternation captures the

11



Typing Judgments
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languages. Further, given the regular expression, the possibility of new classes of unintended
behaviors can be examined. Once an attack pattern is found, sandboxing a vulnerability or disrupting
an essential control flow can neutralize the the attack pattern in the resulting weird machine.
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w ::= w · w | w |w | w⇤ | ✏ Weird Machine

Leak | Injection | Jit Vulnerability Types
f ::= hc, ii Information Flow Type
c ::= L | H Confidentiality Type
i ::= L | H Integrity Type

Figure 2: Syntax

Syntax. We now showcase a core
information and vulnerability flow type
system for the while language. Fig. 2
shows the language syntax. An expres-
sion e is a value n, a variable x, an oper-
ation e1 � e2, a sequence e1; e2, a condi-
tional if e e1 else e2, a loop while e e

0, an
assignment x := e, or a JIT compilation
of an expression jit e. This expression
is used to model the just-in-time compi-
lation features of our browser use-case.

The type system associates a weird
machine w to a program expression e. We model weird machines as regular expression terms.
The alphabet of this language are vulnerability types such as Leak that represents leaking secrets,
Injection that represents injection of payloads into the memory space of the process, and Jit that
represents jit compilation (of injected code). A weird machine can be the concatenation w · w0 or
the alternation w |w0 of two machines w and w

0, or the Kleene closure w
⇤ of a machine w. These

operators can capture the common patterns of vulnerabilities. The void machine is represented as ✏.
In order to detect vulnerabilities, the type system associates to each expression e an information
flow type f in addition to the weird machine term w. An information flow type f is a tuple hc, ii
of the confidentiality type c and the integrity type i. The confidentiality and integrity types form
lattices v, for example with low L and high H elements.

The type system has the judgments of the form �, fx ` e : w, f where � is the type environment,
fx is the information flow type of the context, e is the program expression that is being typed, w is
the weird machine of e, and f is the information flow type of e. The judgment is read as follows:
under the environment �, and the context information flow type fx, the expression e exposes the
abstract weird machine w and has the information flow type f . The type environment � maps
variables to their flow types f . The information flow type of the context fx represents the implicit
flow types of the context under which e is typed, i.e., the type of the enclosing conditions.

Type System. The type system is presented in Fig. 3. The rule VAL-TYPE simply type-checks
a value n with the void weird machine ✏ and low confidentiality and high integrity. Similarly, the
rule VAR-TYPE type-checks a variable x according to the environment �.

The rule OP-TYPE type-checks an operation. The resulting weird machine is the concatenation
of the weird machines of the operands and the resulting flow type is join of their flow types. The
concatenation operator captures the control flow order of vulnerabilities. Similarly, the rule OP-
TYPE type-checks a sequence of two expressions. As for operations, the resulting weird machine
is the concatenation. However, the resulting flow type is the flow type of the latter operand as the
result of a sequence is the result of its second operand.

The rule IF-TYPE type-checks a conditional expression if e e
0
else e

00. The resulting weird
machine is w · (w0 | w00), the concatenation of the weird machine w of the condition e with the
alternation of the weird machines w

0 and w
00 of the two branches. The alternation captures the

11



Type System
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fact that the vulnerabilities of either branches are possible. Each of the two branches e0 and e
00 are

type-checked as f 0 and f
00 under the context flow type f of the condition e. The resulting flow type

is the join of the flow types f 0 and f
00 of the two branches, as the result a conditional can be the

result of either of its branches.

VAL-TYPE
�, fx ` n : ✏, hL,Hi

VAR-TYPE
�(x) = f

�, fx ` x : ✏, f

OP-TYPE
�, fx ` e : w, f �, fx ` e0 : w0, f 0

�, fx ` e � e0 : w · w0, f t f 0

SEQ-TYPE
�, fx ` e : w, f �, fx ` e0 : w0, f 0

�, fx ` e; e0 : w · w0, f 0

IF-TYPE
�, fx ` e : w, f �, fx t f ` e0 : w0, f 0

�, fx t f ` e00 : w00, f 00

�, fx ` if e e0 else e00 : w · (w0 | w00), f 0 t f 00

WHILE-TYPE
�, fx ` e : w, f �, fx t f ` e0 : w0, f 0

�, fx ` while e e0 : w · (w0 · w)⇤, f 0

ASSN-TYPE
�(x) = hc, ii �, hcx, ixi ` e : w, hc0, i0i

w0 =

⇢
✏ if c0 t cx v c
Leak else

w00 =

⇢
✏ if i0 t ix v i
Injection else

�, hcx, ixi ` x := e : w · w0 · w00, hc, ii

JIT-TYPE
�, hcx, ixi ` e : w, hc, ii

w0 =

⇢
✏ if i t ix v H

Jit else
�, hcx, ixi ` jit e : w · w0, hc, ii

Figure 3: Type System

The rule WHILE-TYPE type-checks a loop expression
while e e

0. It first type-checks the condition e as the weird
machine w and flow type f , and then under the implicit
flow f , type-checks the body e

0 as the weird machine
w

0 and flow type f
0. The loop expression is associated

with the weird expression w · (w0 · w)⇤ that captures the
sequence of w from the condition and the Kleene closure
of the sequence of w0 and w from the body and the re-
execution of the condition.

The rule ASSN-TYPE type-checks an assignment ex-
pression x := e. Let the context flow type be hcx, ixi. The
rule first obtains the flow types hc, ii and hc0, i0i for x and
e, and the weird machine w for e. It then checks whether
the flow is safe. If the join of c0 and cx cannot flow to c,
then x may not have enough confidentiality to receive the
value of e, and the assignment is associated with a Leak

vulnerability w
0. Dually, if the join of i0 and ix cannot flow

to i, then the value of e may not have enough integrity to
be assigned to x, and the assignment is associated with an
Injection vulnerability w

00. On the other hand, in both of
the above checks, if the flow is legal, the weird machine is
void ✏. The resulting weird machine is the concatenation
of the three weird machines w, w0 and w

00. As the return
value of the assignment is the value of x, the resulting
flow type is simply the flow type of x.

The rule JIT-TYPE type-checks a JIT expression jit e.
Let the context flow type be hcx, ixi. The rule first type-
checks e with the weird machine w and flow type hc, ii.
The rule checks whether the flow to the JIT compiler has
high integrity. If the join of i and ix cannot flow to H, then
the passed expression e or the implicit flow leading to the
JIT expression may not have enough integrity, and the JIT
compilation is associated with an Jit weird machine w

0. Otherwise, the weird machine is void ✏.
The resulting weird machine is the concatenation of the two weird machines w and w

0. As the jit

expression returns the result of compiling e, its flow type is the same as that of e.
This core type system represented the crux of the idea. For a full-fledged checker, several

theoretical and practical elaborations are needed including mechanized formalization of the type
system and the proof of its soundness, and its implementation and application to industrial code-
bases. We will develop an extension of the C language to capture type annotation for confidentiality
and integrity, and user-declared vulnerabilities, and a type checker and inferencer that type-checks
input programs, and infers their weird machines. We will apply the resulting checker to browser
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fact that the vulnerabilities of either branches are possible. Each of the two branches e0 and e
00 are
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The rule WHILE-TYPE type-checks a loop expression
while e e

0. It first type-checks the condition e as the weird
machine w and flow type f , and then under the implicit
flow f , type-checks the body e

0 as the weird machine
w

0 and flow type f
0. The loop expression is associated

with the weird expression w · (w0 · w)⇤ that captures the
sequence of w from the condition and the Kleene closure
of the sequence of w0 and w from the body and the re-
execution of the condition.

The rule ASSN-TYPE type-checks an assignment ex-
pression x := e. Let the context flow type be hcx, ixi. The
rule first obtains the flow types hc, ii and hc0, i0i for x and
e, and the weird machine w for e. It then checks whether
the flow is safe. If the join of c0 and cx cannot flow to c,
then x may not have enough confidentiality to receive the
value of e, and the assignment is associated with a Leak

vulnerability w
0. Dually, if the join of i0 and ix cannot flow

to i, then the value of e may not have enough integrity to
be assigned to x, and the assignment is associated with an
Injection vulnerability w

00. On the other hand, in both of
the above checks, if the flow is legal, the weird machine is
void ✏. The resulting weird machine is the concatenation
of the three weird machines w, w0 and w

00. As the return
value of the assignment is the value of x, the resulting
flow type is simply the flow type of x.

The rule JIT-TYPE type-checks a JIT expression jit e.
Let the context flow type be hcx, ixi. The rule first type-
checks e with the weird machine w and flow type hc, ii.
The rule checks whether the flow to the JIT compiler has
high integrity. If the join of i and ix cannot flow to H, then
the passed expression e or the implicit flow leading to the
JIT expression may not have enough integrity, and the JIT
compilation is associated with an Jit weird machine w

0. Otherwise, the weird machine is void ✏.
The resulting weird machine is the concatenation of the two weird machines w and w

0. As the jit

expression returns the result of compiling e, its flow type is the same as that of e.
This core type system represented the crux of the idea. For a full-fledged checker, several

theoretical and practical elaborations are needed including mechanized formalization of the type
system and the proof of its soundness, and its implementation and application to industrial code-
bases. We will develop an extension of the C language to capture type annotation for confidentiality
and integrity, and user-declared vulnerabilities, and a type checker and inferencer that type-checks
input programs, and infers their weird machines. We will apply the resulting checker to browser
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of the sequence of w0 and w from the body and the re-
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pression x := e. Let the context flow type be hcx, ixi. The
rule first obtains the flow types hc, ii and hc0, i0i for x and
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be assigned to x, and the assignment is associated with an
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00. On the other hand, in both of
the above checks, if the flow is legal, the weird machine is
void ✏. The resulting weird machine is the concatenation
of the three weird machines w, w0 and w

00. As the return
value of the assignment is the value of x, the resulting
flow type is simply the flow type of x.

The rule JIT-TYPE type-checks a JIT expression jit e.
Let the context flow type be hcx, ixi. The rule first type-
checks e with the weird machine w and flow type hc, ii.
The rule checks whether the flow to the JIT compiler has
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The resulting weird machine is the concatenation of the two weird machines w and w
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expression returns the result of compiling e, its flow type is the same as that of e.
This core type system represented the crux of the idea. For a full-fledged checker, several

theoretical and practical elaborations are needed including mechanized formalization of the type
system and the proof of its soundness, and its implementation and application to industrial code-
bases. We will develop an extension of the C language to capture type annotation for confidentiality
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input programs, and infers their weird machines. We will apply the resulting checker to browser
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0. Dually, if the join of i0 and ix cannot flow
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00. On the other hand, in both of
the above checks, if the flow is legal, the weird machine is
void ✏. The resulting weird machine is the concatenation
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00. As the return
value of the assignment is the value of x, the resulting
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The rule JIT-TYPE type-checks a JIT expression jit e.
Let the context flow type be hcx, ixi. The rule first type-
checks e with the weird machine w and flow type hc, ii.
The rule checks whether the flow to the JIT compiler has
high integrity. If the join of i and ix cannot flow to H, then
the passed expression e or the implicit flow leading to the
JIT expression may not have enough integrity, and the JIT
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0. Otherwise, the weird machine is void ✏.
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0. As the jit

expression returns the result of compiling e, its flow type is the same as that of e.
This core type system represented the crux of the idea. For a full-fledged checker, several

theoretical and practical elaborations are needed including mechanized formalization of the type
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fact that the vulnerabilities of either branches are possible. Each of the two branches e0 and e
00 are

type-checked as f 0 and f
00 under the context flow type f of the condition e. The resulting flow type

is the join of the flow types f 0 and f
00 of the two branches, as the result a conditional can be the

result of either of its branches.

VAL-TYPE
�, fx ` n : ✏, hL,Hi
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�(x) = f

�, fx ` x : ✏, f
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�(x) = hc, ii �, hcx, ixi ` e : w, hc0, i0i

w0 =

⇢
✏ if c0 t cx v c
Leak else

w00 =

⇢
✏ if i0 t ix v i
Injection else

�, hcx, ixi ` x := e : w · w0 · w00, hc, ii

JIT-TYPE
�, hcx, ixi ` e : w, hc, ii

w0 =

⇢
✏ if i t ix v H

Jit else
�, hcx, ixi ` jit e : w · w0, hc, ii

Figure 3: Type System

The rule WHILE-TYPE type-checks a loop expression
while e e

0. It first type-checks the condition e as the weird
machine w and flow type f , and then under the implicit
flow f , type-checks the body e

0 as the weird machine
w

0 and flow type f
0. The loop expression is associated

with the weird expression w · (w0 · w)⇤ that captures the
sequence of w from the condition and the Kleene closure
of the sequence of w0 and w from the body and the re-
execution of the condition.
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0. Dually, if the join of i0 and ix cannot flow

to i, then the value of e may not have enough integrity to
be assigned to x, and the assignment is associated with an
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00. On the other hand, in both of
the above checks, if the flow is legal, the weird machine is
void ✏. The resulting weird machine is the concatenation
of the three weird machines w, w0 and w

00. As the return
value of the assignment is the value of x, the resulting
flow type is simply the flow type of x.

The rule JIT-TYPE type-checks a JIT expression jit e.
Let the context flow type be hcx, ixi. The rule first type-
checks e with the weird machine w and flow type hc, ii.
The rule checks whether the flow to the JIT compiler has
high integrity. If the join of i and ix cannot flow to H, then
the passed expression e or the implicit flow leading to the
JIT expression may not have enough integrity, and the JIT
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0. Otherwise, the weird machine is void ✏.
The resulting weird machine is the concatenation of the two weird machines w and w

0. As the jit

expression returns the result of compiling e, its flow type is the same as that of e.
This core type system represented the crux of the idea. For a full-fledged checker, several
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system and the proof of its soundness, and its implementation and application to industrial code-
bases. We will develop an extension of the C language to capture type annotation for confidentiality
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VAR-SEM
h�,R[x]i !
h�,R[�(x)]i

ASSN-SEM
h�,R[x := n]i !
h�[x 7! n],R[n]i

CTX-SEM
e ! e

0

h�,R[e]i ! h�,R[e0]i

OP-SEM
n1 � n2 = n3

n1 � n2 ! n3

SEQ-SEM
v; e ! e

IF-THEN-SEM
v 6= 0

if v e1 else e2 ! e1

IF-ELSE-SEM
if 0 e1 else e2 ! e2

WHILE-SEM
while e e

0 !
if e (e0; while e e

0) else 0

JIT-SEM
jit n ! n

Figure 3. Operational Semantics. h�, ei ! h�, ei

VAR-ISEM
h�, �, fx,R[x]i !
h�, �, fx,R[�(x)]i

ASSN-ISEM
�(x) = hc, ii fx = hcx, ixi v = hn, hc0, i0ii

w1 =

⇢
✏ if c0 t cx v c

Leak else w2 =

⇢
✏ if i0 t ix v i

Injection else w = w1 · w2

h�, �, fx,R[x := v]i w! h�, �[x 7! v], fx,R[v]i

CTX-ISEM

hfx, ei
w! hf 0

x, e
0i

h�, �, fx,R[e]i w! h�, �, f 0
x,R[e0]i

OP-ISEM
n1 � n2 = n3 f1 t f2 = f3

hfx, hn1, f1i � hn2, f2ii ! hfx, hn3, f3ii

SEQ-ISEM
hfx, v; ei ! hfx, ei

IF-THEN-ISEM
n 6= 0

hfx, if hn, f 0
xi e1 else e2i ! hfx t f

0
x, e1i

IF-ELSE-ISEM
hfx, if h0, f 0

xi e1 else e2i ! hfx t f
0
x, e2i

WHILE-ISEM
hfx,while e e

0i !
hfx, if e (e0; while e e

0) else 0i

JIT-ISEM
fx = hcx, ixi v = hn, hc, iii

w =

⇢
✏ if i t ix v H

Jit else

hfx, jit vi
w! hfx, vi

Figure 4. Instrumented Operational Semantics. h�, �, fx, ei
w! h�, �, fx, ei

the value and the implicit integrity is high. Otherwise, JIT
is either applied to a low integrity expression, or is called
through low integrity control flow that may be controlled
by the adversary. In this case, the label captures the Jit

vulnerability.
Equivalence. The semantics and the instrumented se-

mantics have tightly related steps: for any step in one, there
is a corresponding step in the other one. We formally capture
this relation.

We define the function pure that removes the instru-
mented flow types from an instrumented store.

Definition 1 (pure(�)).
pure([x 7! hn, fi]) := [x 7! n].

Further, we overload the function pure on expressions
to remove instrumented flow types from values.

Definition 2 (pure(e)).
pure(hn, fi) := n,

pure(e1 � e2) := pure(e1) � pure(e2)
pure(e1; e2) := pure(e1); pure(e2)
pure(if e e1 else e2) := if pure(e) pure(e1) else pure(e2)
pure(while e e

0) := while pure(e) pure(e0)

pure(x := e) := x := pure(e)
pure(jit e) := jit pure(e)

To avoid unnecessary clutter, we leave implicit rewriting
of literals n to instrumented literals hn,?i. The instru-
mented semantics works with instrumented literals; thus,
any literal in an expression should be converted to its
equivalent instrumented literal before being evaluated by the
instrumented semantics.

We can now state the following equivalence theorem.
For every execution with the operational semantics, there is
a corresponding execution with the instrumented operational
semantics, and vice versa.

Theorem 1. For all �, �1, fx1 and e1, then

(1) For all �2, fx2, e2 and w,

if h�, �1, fx1, e1i
w
!⇤ h�, �2, fx2, e2i

then hpure(�1), pure(e1)i !⇤ hpure(�2), pure(e2)i.
(2) Further, for all �2, e

0
2,

if hpure(�1), pure(e1)i !⇤ h�2, e
0
2i,

then there exists w, �2, fx2 and e2 such that

h�, �1, fx1, e1i
w
!⇤ h�, �2, fx2, e2i where

�2 = pure(�2) and e
0
2 = pure(e2).
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by the adversary. In this case, the label captures the Jit

vulnerability.
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is a corresponding step in the other one. We formally capture
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We define the function pure that removes the instru-
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Definition 1 (pure(�)).
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To avoid unnecessary clutter, we leave implicit rewriting
of literals n to instrumented literals hn,?i. The instru-
mented semantics works with instrumented literals; thus,
any literal in an expression should be converted to its
equivalent instrumented literal before being evaluated by the
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We can now state the following equivalence theorem.
For every execution with the operational semantics, there is
a corresponding execution with the instrumented operational
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Type-safety Guarantees

• If the type system associates a weird machine to a program, 
that weird machine covers the weird behavior that the 
executions of the program can exhibit.
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Figure 5. Type System. �, f ` e : w, f

�, fx ` e : w, f ,

� ✏ �, and

h�, �, fx, ei
w0
! h�, �0

, f
0
x, e

0i,
then there exist w

00
, f

0
, w1 and w2 such that

�, f 0
x ` e

0 : w00
, f

0
,

w = w1 · w2,

w
0 ✓ w1, and

w
00 ✓ w2.

The above inclusion property for weird behaviors can be
generalized from every step to every execution. If the type
system associates a weird machine to a program, that weird
machine covers the weird behavior that the executions of
the program can exhibit. If the type system type-checks a
program e as the weird machine w, then any behavior w

0

that an execution of e exhibits is a prefix of w.

Theorem 2 (Type-safety). For all �, fx, e w, f , �, w
0
, �

0
,

f
0
x, and e

0
, if

�, fx ` e : w, f ,

� ✏ �, and

h�, �, fx, ei
w0

!⇤ h�, �0
, f

0
x, e

0i,
then

w
0 b w.

The above type-safety theorem immediately implies the
following corollary. If the type system type-checks a pro-
gram e as the weird machine w, and w does not intersect
with an attack pattern w

0, then no execution of the program
can produce an instance of that attack.

Corollary 2.1. For all �, fx, e w, f , �, w
0
, �

0
, f

0
x, and e

0
,

if

�, fx ` e : w, f ,

� ✏ �,

w \ w
0 = ;, and

w
00 ✓ w

0
,

then

h�, �, fx, ei
w00

6!⇤ h�, �0
, f

0
x, e

0i.
In above corollary, the weird behavior w00 is an instance

of the attack pattern w
0.

7. Related Works

Discussion. The goal of this paper is to design type sys-
tems that derive the abstract weird machines that programs
expose. It notes the need for type theories that track unin-
tended in addition to intended behavior of programs, and
their composition. Type systems have been applied to check
security properties of programs such as non-interference
and memory safety. We summarize the relevant works on
security type systems, typed assembly language and proof-
carrying code below. However, these works do not track
vulnerabilities and their composition for higher-level mali-
cious behavior. To the best of our knowledge, this project is
the first to present a type system that models vulnerability
types and derives the abstract weird machines that the
composition of these vulnerabilities can expose. Recently,
program logics have been designed to show the incorrectness
of programs. These logics can show the presence of bugs;
however, they do not consider whether and how these bugs
can be exploited, and composed into attacks. Fuzzing is
another popular technique that feeds random input to the
program to trigger bugs. However, it cannot provide any
formal guarantees for the security of the program.

Type Systems. Security type systems [20], [46], [43],
[51], [38], [28], [15] have been used to enforce information
flow control, and guarantee non-interference. They have
been used both to enforce confidentiality and integrity [9],
[59] policies. Recently, they have been used to enforce
availability and resiliency policies [60], [61], [33] as well.
Further, information flow type systems have been used to
reason about security properties of composed systems [18],
[34] in several domains including concurrent programs [35],
app stores [22], and smart contracts [12].
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Type-safety Guarantees

• If the type system type-checks a program e as the weird 
machine w, and w does not intersect with an attack pattern 
w′, then no execution of the program can produce an 
instance of that attack. 
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Conclusion

• The type system can detect attacks that compose multiple 
vulnerabilities such as the DOJITA browser attack.


• The checker that can detect the presence and absence of 
composed attacks has the promise to be adopted by many 
who strive for more secure software.
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